AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing self-optimization of carbon support in oxygen evolution reaction

Wenjie Xu1,§Dengfeng Cao1,§Oyawale Adetunji Moses2,§Beibei Sheng1Chuanqiang Wu3Hongwei Shou1,4Xiaojun Wu4Shuangming Chen1( )Li Song1
National Synchrotron Radiation Laboratory, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefei230026China
Materials Interfaces Center, Shenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhen440305China
Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
Department of Materials Sciences and Engineering, School of Chemistry and Materials SciencesUniversity of Science and Technology of ChinaHefei230026China

§ Wenjie Xu, Dengfeng Cao, and Oyawale Adetunji Moses contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Despite acknowledgment of structural reconstruction of materials following oxygen evolution reaction (OER) reaction, the role of support during the reconstruction process has been ignored. Given this, we directly in situ transform the residual iron present in raw single-walled carbon nanotubes (SWCNT) into Fe2O3 and thus build Fe2O3-CNT as the model system. Intriguingly, an anomalous self-optimization occurred on SWCNT and the derived components show satisfactory electrochemical performance. Soft X-ray absorption spectroscopy (sXAS) analysis and theory calculation correspondingly indicate that self-optimization yields stronger interaction between SWCNT and Fe2O3 nanoparticles, where the electrons migrate from Fe2O3 to optimized SWCNT. Such polarization will generate a positive charge center and thus boost the OER activity. This finding directly observes the self-optimization of support effect, providing a new perspective for OER and related electrochemical reactions.

Electronic Supplementary Material

Download File(s)
12274_2021_3368_MOESM1_ESM.pdf (4.7 MB)

References

1

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.

2

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748-7759.

3

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166-16170.

4

Dresp, S.; Luo, F.; Schmack, R.; Kühl, S.; Gliech, M.; Strasser, P. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 2016, 9, 2020-2024.

5

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915-923.

6

Cao, D. F.; Liu, D. B.; Chen, S. M.; Moses, O. A.; Chen, X. J.; Xu, W. J.; Wu, C. Q.; Zheng, L. R.; Chu, S. Q.; Jiang, H. L. et al. Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy Environ. Sci. 2021, DOI: 10.1039/D0EE02276D.

7

Jiang, H. L.; He, Q.; Zhang, Y. K.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 51, 2968-2977.

8

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; De Arquer, F. P. G.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378-11386.

9

Sato, Y.; Kowalski, D.; Aoki, Y.; Habazaki, H. Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media. Appl. Catal. A Gen. 2020, 597, 117555.

10

Singh, H.; Zhuang, S. Q.; Ingis, B.; Nunna, B. B.; Lee, E. S. Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms. Carbon 2019, 151, 160-174.

11

Ross, P. N.; Sokol, H. The corrosion of carbon-black anodes in alkaline electrolyte: I. Acetylene black and the effect of cobalt catalyzation. J. Electrochem. Soc. 1984, 131, 1742-1750.

12

Pérez-Rodríguez, S.; Sebastián, D.; Lazáro, M. J. Insights on the electrochemical oxidation of ordered mesoporous carbons. J. Electrochem. Soc. 2020, 167, 024511.

13

Wang, H. F.; Chen, R. X.; Feng, J. Y.; Qiao, M.; Doszczeczko, S.; Zhang, Q.; Jorge, A. B.; Titirici, M. M. Freestanding non-precious metal electrocatalysts for oxygen evolution and reduction reactions. ChemelEctroChem 2018, 5, 1786-1804.

14

Filimonenkov, I. S.; Bouillet, C.; Kéranguéven, G.; Simonov, P. A.; Tsirlina, G. A.; Savinova, E. R. Carbon materials as additives to the OER catalysts: RRDE study of carbon corrosion at high anodic potentials. Electrochim. Acta 2019, 321, 134657.

15

Yang, J. C.; Park, S.; Choi, K. Y.; Park, H. S.; Cho, Y. G.; Ko, H.; Song, H. K. Activity-durability coincidence of oxygen evolution reaction in the presence of carbon corrosion: Case study of MnCo2O4 spinel with carbon black. ACS Sustainable Chem. Eng. 2018, 6, 9566-9571.

16

Jang, S. E.; Kim, H. Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 14700-14701.

17

Yi, Y. M.; Tornow, J.; Willinger, E.; Willinger, M. G.; Ranjan, C.; Schlögl, R. Electrochemical degradation of multiwall carbon nanotubes at high anodic potential for oxygen evolution in acidic media. ChemElectroChem 2015, 2, 1929-1937.

18

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013-2036.

19

Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.

20

Wu, H.; Yang, T.; Du, Y. H.; Shen, L.; Ho, G. W. Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 2018, 30, 1804341.

21

McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521-1529.

22

Allen, G. C.; Curtis, M. T.; Hooper, A. J.; Tucker, P. M. X-ray photoelectron spectroscopy of iron-oxygen systems. J. Chem. Soc. Dalton Trans. 1974, 1525-1530.

23

Sun, S. N.; Li, H. Y.; Xu, Z. J. Impact of surface area in evaluation of catalyst activity. Joule 2018, 2, 1024-1027.

24

Yang, X. L.; Li, H. N.; Lu, A. Y.; Min, S. X.; Idriss, Z.; Hedhili, M. N.; Huang, K. W.; Idriss, H.; Li, L. J. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 2016, 25, 42-50.

25

Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. PGM-Free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. Adv. Mater. 2019, 31, 1807615.

26

Kuznetsova, A.; Popova, I.; Yates, J. T., Jr.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 2001, 123, 10699-10704.

27

Feng, X. F.; Song, M. K.; Stolte, W. C.; Gardenghi, D.; Zhang, D.; Sun, X. H.; Zhu, J. F.; Cairns, E. J.; Guo, J. H. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: A comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling. Phys. Chem. Chem. Phys. 2014, 16, 16931-16940.

28

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.

29

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

30

Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Cheng, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521-530.

31

Augustsson, A.; Herstedt, M.; Guo, J. H.; Edström, K.; Zhuang, G. V.; Ross, P. N. Jr.; Rubensson, J. E.; Nordgren, J. Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 4185-4189.

32

He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903-11909.

33

Lin, Y. X.; Yang, L.; Zhang, Y. K.; Jiang, H. L.; Xiao, Z. J.; Wu, C. Q.; Zhang, G. B.; Jiang, J.; Song, L. Defective Carbon-CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1703623.

34

Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529-1534.

35

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537-541.

36

Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733-11740.

37

Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440-1447.

38

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

39

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in Germanium. Phys. Rev. B 1994, 49, 14251-14269.

40

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

41

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505-1509.

42

Pozun, Z. D.; Henkelman, G. Hybrid density functional theory band structure engineering in hematite. J. Chem. Phys. 2011, 134, 224706.

43

Adelstein, N.; Neaton, J. B.; Asta, M.; De Jonghe, L. C. Density functional theory based calculation of small-polaron mobility in hematite. Phys. Rev. B 2014, 89, 245115.

Nano Research
Pages 4534-4540
Cite this article:
Xu W, Cao D, Moses OA, et al. Probing self-optimization of carbon support in oxygen evolution reaction. Nano Research, 2021, 14(12): 4534-4540. https://doi.org/10.1007/s12274-021-3368-1
Topics:

710

Views

23

Crossref

21

Web of Science

22

Scopus

2

CSCD

Altmetrics

Received: 03 December 2020
Revised: 26 January 2021
Accepted: 27 January 2021
Published: 05 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return