AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries

Sijia Guo1,§Yingbo Xiao1,§Jia Wang1Yuan Ouyang1Xin Li1Haoyan Deng1Wenchao He1Qinghan Zeng1Wei Zhang1Qi Zhang1,2( )Shaoming Huang1,2( )
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage DevicesSchool of Materials and Energy, Guangdong University of TechnologyGuangzhou510006China
Synergy Innovation Institute of GDUTHeyuan517000China

§ Sijia Guo and Yingbo Xiao contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

Lithium-sulfur (Li-S) battery has attracted intensive attention in the realm of energy storage owing to its high theoretical capacity and energy density. However, the shuttle effect of soluble lithium polysulfides (LiPSs) between electrodes results in rapid capacity degradation. Herein, a strategy which combines the design of both chemical interaction and microstructure of interlayer was proposed to suppress the shuttle effect. The chemical interaction between different functionalized MOFs and LiPSs was systematically studied to find the best candidate. Furthermore, an interlayer with ordered structure was constructed via the layer-by-layer assembly of metal-organic frameworks (MOFs) on graphene (UiO-66-NH2@graphene) to create sinuous channels which can better impede the diffusion process of LiPSs by the strong adsorption of MOF toward LiPSs. Consequently, in comparison to the battery with a bare separator, the ordered interlayer increased the initial discharge capacity of battery by 28.98% at 1.0 C and lowered the capacity decay rate remarkably from 0.10% to 0.067% per cycle, indicating that the design of chemical interaction and microstructure paves the way for high-performance Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2021_3372_MOESM1_ESM.pdf (2.2 MB)

References

1

Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539-9544.

2

Fan, L.; Chen, S. H.; Zhu, J. Y.; Ma, R. F.; Li, S. P.; Podila, R.; Rao, A. M.; Yang, G. Z.; Wang, C. X.; Liu, Q. et al. Simultaneous suppression of the dendrite formation and shuttle effect in a lithium-sulfur battery by bilateral solid electrolyte interface. Adv. Sci. 2018, 5, 1700934.

3

Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800849.

4

Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

5

Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.

6

Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.

7

Luo, C.; Liang, X.; Sun, Y. F.; Lv, W.; Sun, Y. W.; Lu, Z. Y.; Hua, W. X.; Yang, H. T.; Wang, R. C.; Yan, C. L. et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 290-297.

8

He, D. Q.; Meng, J. T.; Chen, X. Y.; Liao, Y. Q.; Cheng, Z. X.; Yuan, L. X.; Li, Z.; Huang, Y. H. Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2001201.

9

Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; and Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.

10

Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049-1075.

11

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

12

Wang, Z. Q.; Huang, W. Y.; Hua, J. C.; Wang, Y. D.; Yi, H. C.; Zhao, W. G.; Zhao, Q. H.; Jia, H.; Fei, B.; Pan, F. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods 2020, 4, 2000082.

13

Xiao, Z. B.; Yang, Z.; Nie, H. G.; Lu, Y. Q.; Yang, K. Q.; Huang, S. M. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 8683-8689.

14

Guo, D. Y.; Chen, X. A.; Wei, H. F.; Liu, M. L.; Ding, F.; Yang, Z.; Yang, K. Q.; Wang, S.; Xu, X. J.; Huang, S. M. Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 6245-6256.

15

Guo, D.; Wei, H.; Chen, X.; Liu, M.; Ding, F.; Yang, Z.; Yang, Y.; Wang, S.; Yang, K.; Huang, S. M. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 18193-18206.

16

Wang, L.; Yang, Z.; Nie, H. G.; Gu, C. C.; Hua, W. X.; Xu, X. J.; Chen, X. A.; Chen, Y.; Huang, S. M. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 15343-15352.

17

Fan, Y.; Yang, Z.; Hua, W. X.; Liu, D.; Tao, T.; Rahman, M. M.; Lei, W. W.; Huang, S. M.; Chen, Y. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602380.

18

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. Lithium-sulfur batteries: A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2890.

19

Hua, W. X.; Yang, Z.; Nie, H. G.; Li, Z. Y.; Yang, J. Z.; Guo, Z. Q.; Ruan, C. P.; Chen, X. A.; Huang, S. M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano 2017, 11, 2209-2218.

20

Ding, X. W.; Yang, S.; Zhou, S. Y.; Zhan, Y. X.; Lai, Y. C.; Zhou, X. M.; Xu, X. J.; Nie, H. G.; Huang, S. M.; Yang, Z. Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2003354.

21

Zhou, S. Y.; Yang, S.; Ding, X. W.; Lai, Y. C.; Nie, H. G.; Zhang, Y. G.; Chan, D.; Duan, H.; Huang, S. M.; Yang, Z. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium-sulfur batteries. ACS Nano 2020, 14, 7538-7551.

22

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

23

Hao, Z. X.; Yuan, L. X.; Chen, C. J.; Xiang, J. W.; Li, Y. Y.; Huang, Z. M.; Hu, P.; Huang, Y. H. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17711-17717.

24

Song, H. W.; Shen, L. S.; Wang, J.; Wang, C. X. Phase segregation and self-nano-crystallization induced high performance Li-storage in metal-organic framework bulks for advanced lithium ion batteries. Nano Energy 2017, 34, 47-57.

25

Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103-1107.

26

Wang, S. J.; Xhaferaj, N.; Wahiduzzaman, M.; Oyekan, K.; Li, X.; Wei, K.; Zheng, B.; Tissot, A.; Marrot, J.; Shepard, W. et al. Engineering structural dynamics of zirconium metal-organic frameworks based on natural C4 linkers. J. Am. Chem. Soc. 2019, 141, 17207-17216.

27

Chang, G. G.; Ma, X. C.; Zhang, Y. X.; Wang, L. Y.; Tian, G.; Liu, J. W.; Wu, J.; Hu, Z. Y.; Yang, X. Y.; Chen, B. L. Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Adv. Mater. 2019, 31, 1904969.

28

Li, D. X.; Wang, J.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Gan, L. Y.; Zhang, Q.; Huang, S. M. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery. Adv. Funct. Mater. 2020, 30, 2003945.

29

Zhang, Q.; Liu, B. M.; Wang, J.; Li, Q. F.; Li, D. X.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Zheng, M. Y. et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 2020, 5, 2919-2926.

30

Li, M. L.; Wan, Y.; Huang, J. K.; Assen, A. H.; Hsiung, C. E.; Jiang, H.; Han, Y.; Eddaoudi, M.; Lai, Z. P.; Ming, J. et al. Metal-organic framework-based separators for enhancing Li-S battery stability: Mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2017, 2, 2362-2367.

31

Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110-19117.

32

Zhang, W. J.; Huang, H. L.; Zhong, C. L.; Liu, D. H. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: A combined experimental and molecular simulation study. Phys. Chem. Chem. Phys. 2012, 14, 2317-2325.

33

Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449-9451.

34

Zhang, Q.; Li, D. X.; Wang, J.; Guo, S. J.; Zhang, W.; Chen, D.; Li, Q.; Rui, X. H.; Gan, L. Y.; Huang, S. M. Multiscale optimization of Li-ion diffusion in solid lithium metal batteries via ion conductive metal-organic frameworks. Nanoscale 2020, 12, 6976-6982.

35

Chang, C. H.; Chung, S. H.; Han, P.; Manthiram, A. Oligoanilines as a suppressor of polysulfide shuttling in lithium-sulfur batteries. Mater. Horiz. 2017, 4, 908-914.

36

Hong, X. H.; Jin, J.; Wu, T.; Lu, Y.; Zhang, S. P.; Chen, C. H.; Wen, Z. Y. A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. J. Mater. Chem. A 2017, 5, 14775-14782.

37

Seh, Z. W.; Wang, H. T.; Hsu, P. C.; Zhang, Q. F.; Li, W. Y.; Zheng, G. Y.; Yao, H. B.; Cui, Y. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 2014, 7, 672-676.

38

Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X. Y.; Perman, J. A.; Ma, S. Q. A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 2017, 5, 8385-8393.

39

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

40

Sun, J.; Sun, Y. M.; Pasta, M.; Zhou, G. M.; Li, Y. Z.; Liu, W.; Xiong, F.; Cui, Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater. 2016, 28, 9797-9803.

41

Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091-2104.

Nano Research
Pages 4556-4562
Cite this article:
Guo S, Xiao Y, Wang J, et al. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Research, 2021, 14(12): 4556-4562. https://doi.org/10.1007/s12274-021-3372-5
Topics:

741

Views

35

Crossref

36

Web of Science

35

Scopus

0

CSCD

Altmetrics

Received: 12 October 2020
Revised: 21 January 2021
Accepted: 01 February 2021
Published: 10 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return