Graphical Abstract

Developing low-energy input route for conversion of methane (CH4) to value-added methanol (CH3OH) at room temperature is important in environment and industry. Bonding in electron donor-acceptor hybrid can potentially promote charge transfer and photocatalytic efficiency of CH4 conversion. Herein, bonding in electron donor rhodamine B (RhB)–acceptor (TiO2) hybrid (RhB/TiO2) significantly promotes the selectivity of photocatalytic oxidation of CH4 to CH3OH and utilization of visible light (low-energy photons) at ambient condition. Even under green light irradiation (λ = 550 nm), the noble-metal-free RhB/TiO2 hybrid synthesized presents enhanced oxidation of CH4 to CH3OH with a generation rate of 143 ·mol·g-1·h-1 and selectivity of 94%. This work demonstrates the possibility and feasibility of noble-metal-free catalysts for activating CH4 under visible light at room temperature.
Cui, X. J. ; Li, H. B. ; Wang, Y. ; Hu, Y. L. ; Hua, L. ; Li, H. Y. ; Han, X. W. ; Liu, Q. F. ; Yang, F. ; He, L. M. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902-1910.
Meng, X. G. ; Cui, X. J. ; Rajan, N. P. ; Yu, L. ; Deng, D. H. ; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296-2325.
McFarland, E. Unconventional chemistry for unconventional natural gas. Science 2012, 338, 340-342.
Kanai, M. Photocatalytic upgrading of natural gas. Science 2018, 361, 647-648.
Kirschke, S. ; Bousquet, P. ; Ciais, P. ; Saunois, M. ; Canadell, J. G. ; Dlugokencky, E. J. ; Bergamaschi, P. ; Bergmann, D. ; Blake, D. R. ; Bruhwiler, L. et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813-823.
Lashof, D. A. ; Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529-531.
Solomon, S. ; Qin, D. ; Manning, M. ; Chen, Z. ; Marquis, M. ; Averyt, K. B. ; Tignor, M. ; Miller, H. L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press: Cambridge, 2007; pp 95-123.
Huang, K. F. ; Miller, J. B. ; Huber, G. W. ; Dumesic, J. A. ; Maravelias, C. T. A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2018, 2, 349-365.
Liao, Y. ; Xu, H. M. ; Liu, W. ; Ni, H. F. ; Zhang, X. G. ; Zhai, A. P. ; Quan, Z. W. ; Qu, Z. ; Yan, N. Q. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas. Environ. Sci. Technol. 2019, 53, 4511-4518.
Toyoda, S. ; Suzuki, Y. ; Hattori, S. ; Yamada, K. ; Fujii, A. ; Yoshida, N. ; Kouno, R. ; Murayama, K. ; Shiomi, H. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system. Environ. Sci. Technol. 2011, 45, 917-922.
Chen, X. X. ; Li, Y. P. ; Pan, X. Y. ; Cortie, D. ; Huang, X. T. ; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.
Choudhary, T. V. ; Choudhary, V. R. Energy-efficient syngas production through catalytic oxy-methane reforming reactions. Angew. Chem. , Int. Ed. 2008, 47, 1828-1847.
Tang, P. ; Zhu, Q. J. ; Wu, Z. X. ; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580-2591.
Zakaria, Z. ; Kamarudin, S. K. Direct conversion technologies of methane to methanol: An overview. Renew. Sust. Energ. Rev. 2016, 65, 250-261.
Kwon, Y. ; Kim, T. Y. ; Kwon, G. ; Yi, J. ; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694-17699.
Huang, W. X. ; Zhang, S. R. ; Tang, Y. ; Li, Y. T. ; Nguyen, L. ; Li, Y. Y. ; Shan, J. J. ; Xiao, D. Q. ; Gagne, R. ; Frenkel, A. I. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. , Int. Ed. 2016, 55, 13441-13445.
Zhou, Y. Y. ; Zhang, L. ; Wang, W. Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.
Hammond, C. ; Forde, M. M. ; Ab Rahim, M. H. ; Thetford, A. ; He, Q. ; Jenkins, R. L. ; Dimitratos, N. ; Lopez-Sanchez, J. A. ; Dummer, N. F. ; Murphy, D. M. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. , Int. Ed. 2012, 51, 5129-5133.
Li, D. ; Rohani, V. ; Fabry, F. ; Parakkulam Ramaswamy, A. ; Sennour, M. ; Fulcheri, L. Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis. Appl. Catal. B: Environ. 2020, 261, 118228.
Nisbet, E. G. ; Dlugokencky, E. J. ; Bousquet, P. Methane on the rise—again. Science 2014, 343, 493-495.
Jackson, R. B. ; Solomon, E. I. ; Canadell, J. G. ; Cargnello, M. ; Field, C. B. Methane removal and atmospheric restoration. Nat. Sustain. 2019, 2, 436-438.
Meng, L. S. ; Chen, Z. Y. ; Ma, Z. Y. ; He, S. ; Hou, Y. D. ; Li, H. H. ; Yuan, R. S. ; Huang, X. H. ; Wang, X. X. ; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294-298.
Li, L. ; Li, G. D. ; Yan, C. ; Mu, X. Y. ; Pan, X. L. ; Zou, X. X. ; Wang, K. X. ; Chen, J. S. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. , Int. Ed. 2011, 50, 8299-8303.
Amano, F. ; Shintani, A. ; Tsurui, K. ; Mukohara, H. ; Ohno, T. ; Takenaka, S. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 2019, 4, 502-507.
Baek, J. ; Rungtaweevoranit, B. ; Pei, X. K. ; Park, M. ; Fakra, S. C. ; Liu, Y. S. ; Matheu, R. ; Alshmimri, S. A. ; Alshehri, S. ; Trickett, C. A. et al. Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 2018, 140, 18208- 18216.
Zimmermann, T. ; Soorholtz, M. ; Bilke, M. ; Schüth, F. Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J. Am. Chem. Soc. 2016, 138, 12395-12400.
Dinh, K. T. ; Sullivan, M. M. ; Narsimhan, K. ; Serna, P. ; Meyer, R. J. ; Dincă, M. ; Román-Leshkov, Y. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper- exchanged zeolites. J. Am. Chem. Soc. 2019, 141, 11641-11650.
Yuliati, L. ; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592-1602.
Sushkevich, V. L. ; Palagin, D. ; Ranocchiari, M. ; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523-527.
Agarwal, N. ; Freakley, S. J. ; McVicker, R. U. ; Althahban, S. M. ; Dimitratos, N. ; He, Q. ; Morgan, D. J. ; Jenkins, R. L. ; Willock, D. J. ; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223-227.
Shan, J. J. ; Li, M. W. ; Allard, L. F. ; Lee, S. ; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605-608.
Ikuno, T. ; Zheng, J. ; Vjunov, A. ; Sanchez-Sanchez, M. ; Ortuño, M. A. ; Pahls, D. R. ; Fulton, J. L. ; Camaioni, D. M. ; Li, Z. Y. ; Ray, D. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal-organic framework. J. Am. Chem. Soc. 2017, 139, 10294-10301.
Park, M. B. ; Park, E. D. ; Ahn, W. S. Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Front. Chem. 2019, 7, 514.
Hu, A. H. ; Guo, J. J. ; Pan, H. ; Zuo, Z. W. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 2018, 361, 668-672.
Zhang, K. N. ; Chang, L. ; An, Q. ; Wang, X. ; Zuo, Z. W. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556-10564.
Wang, S. L. ; Zhu, Y. ; Luo, X. ; Huang, Y. ; Chai, J. W. ; Wong, T. I. ; Xu, G. Q. 2D WC/WO3 heterogeneous hybrid for photocatalytic decomposition of organic compounds with vis-NIR light. Adv. Funct. Mater. 2018, 28, 1705357.
Wang, S. L. ; Luo, X. ; Zhou, X. ; Zhu, Y. ; Chi, X. ; Chen, W. ; Wu, K. ; Liu, Z. ; Quek, S. Y. ; Xu, G. Q. Fabrication and properties of a free- standing two-dimensional titania. J. Am. Chem. Soc. 2017, 139, 15414-15419.
Wang, S. L. ; Lin, S. H. ; Zhang, D. Q. ; Li, G. S. ; Leung, M. K. H. Controlling charge transfer in quantum-size titania for photocatalytic applications. Appl. Catal. B: Environ. 2017, 215, 85-92.
Wen, M. C. ; Li, G. Y. ; Liu, H. L. ; Chen, J. Y. ; An, T. C. ; Yamashita, H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environ. Sci. : Nano 2019, 6, 1006-1025.
Kuwahara, Y. ; Fujie, Y. ; Mihogi, T. ; Yamashita, H. Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly(ethyleneimine) as reusable catalysts for CO2 hydrogenation to formate. ACS Catal. 2020, 10, 6356-6366.
Zhu, S. ; Chen, X. F. ; Li, Z. C. ; Ye, X. Y. ; Liu, Y. ; Chen, Y. ; Yang, L. ; Chen, M. ; Zhang, D. Q. ; Li, G. S. et al. Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 264, 118515.
Zhang, Y. X. ; Kuwahara, Y. ; Mori, K. ; Yamashita, H. Construction of hybrid MoS2 phase coupled with sic heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation. Langmuir 2020, 36, 1174-1182.
Xie, J. J. ; Jin, R. X. ; Li, A. ; Bi, Y. P. ; Ruan, Q. S. ; Deng, Y. C. ; Zhang, Y. J. ; Yao, S. Y. ; Sankar, G. ; Ma, D. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide- supported iron species. Nat. Catal. 2018, 1, 889-896.
Karimi Estahbanati, M. R. ; Feilizadeh, M. ; Babin, A. ; Mei, B. ; Mul, G. ; Iliuta, M. C. Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: A spectroscopic and kinetic study. Chem. Eng. J. 2020, 382, 122732.
Zhang, J. L. ; Zhai, C. Y. ; Zhao, W. ; Chen, Y. X. ; Yin, R. L. ; Zeng, L. X. ; Zhu, M. S. Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide. Chem. Eng. J. 2020, 397, 125310.
Zhang, S. ; Yi, J. J. ; Chen, J. R. ; Yin, Z. L. ; Tang, T. ; Wei, W. X. ; Cao, S. S. ; Xu, H. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 2020, 380, 122583.
Yu, X. ; De Waele, V. ; Löfberg, A. ; Ordomsky, V. ; Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 2019, 10, 700.
Yu, X. ; Zholobenko, V. L. ; Moldovan, S. ; Hu, D. ; Wu, D. ; Ordomsky, V. V. ; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511-519.
Farrell, B. L. ; Igenegbai, V. O. ; Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 2016, 6, 4340-4346.
Zhou, W. C. ; Qiu, X. Y. ; Jiang, Y. H. ; Fan, Y. Y. ; Wei, S. L. ; Han, D. X. ; Niu, L. ; Tang, Z. Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. J. Mater. Chem. A 2020, 8, 13277-13284.
Li, Z. H. ; Pan, X. Y. ; Yi, Z. G. Photocatalytic oxidation of methane over cuo-decorated ZnO nanocatalysts. J. Mater. Chem. A 2019, 7, 469-475.
Palkovits, R. ; Antonietti, M. ; Kuhn, P. ; Thomas, A. ; Schüth, F. Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew. Chem. , Int. Ed. 2009, 48, 6909-6912.
Pan, L. ; Zou, J. J. ; Zhang, X. W. ; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000-10002.
Miller, K. L. ; Lee, C. W. ; Falconer, J. L. ; Medlin, J. W. Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. J. Catal. 2010, 275, 294-299.
Zhao, D. ; Chen, C. C. ; Wang, Y. F. ; Ma, W. H. ; Zhao, J. C. ; Rajh, T. ; Zang, L. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(⒒)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 2008, 42, 308-314.
Weng, Y. X. ; Li, L. ; Liu, Y. ; Wang, L. ; Yang, G. Z. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. J. Phys. Chem. B 2003, 107, 4356-4363.
Boettcher, S. W. ; Bartl, M. H. ; Hu, J. G. ; Stucky, G. D. Structural analysis of hybrid titania-based mesostructured composites. J. Am. Chem. Soc. 2005, 127, 9721-9730.
Hu, Y. ; Anpo, M. ; Wei, C. H. Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. J. Photochem. Photobiol. A 2013, 264, 48-55.
Murcia-López, S. ; Villa, K. ; Andreu, T. ; Morante, J. R. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO4 photocatalyst. Chem. Commun. 2015, 51, 7249-7252.
Villa, K. ; Murcia-López, S. ; Morante, J. R. ; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B: Environ. 2016, 187, 30-36.
Hameed, A. ; Ismail, I. M. I. ; Aslam, M. ; Gondal, M. A. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl. Catal. A: Gen. 2014, 470, 327-335.
Li, Y. ; Li, J. ; Zhang, G. K. ; Wang, K. ; Wu, X. Y. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium. ACS Sustain. Chem. Eng. 2019, 7, 4382-4389.
Murcia-López, S. ; Villa, K. ; Andreu, T. ; Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 2014, 4, 3013-3019.
Murcia-López, S. ; Bacariza, M. C. ; Villa, K. ; Lopes, J. M. ; Henriques, C. ; Morante, J. R. ; Andreu, T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 2017, 7, 2878-2885.
Zhu, W. L. ; Shen, M. K. ; Fan, G. Z. ; Yang, A. ; Meyer, J. R. ; Ou, Y. N. ; Yin, B. ; Fortner, J. ; Foston, M. ; Li, Z. S. et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater. 2018, 1, 6683-6691.
Villa, K. ; Murcia-López, S. ; Andreu, T. ; Morante, J. R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B: Environ. 2015, 163, 150-155.