AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts

Tong Zhang1,2Qin Yue1( )Panpan Pan2Yuan Ren2Xuanyu Yang2Xiaowei Cheng2Fahad A. Alharthi4Abdulaziz A. Alghamdi4Yonghui Deng2,3( )
Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610051China
Department of ChemistryState Key Laboratory of Molecular Engineering of Polymers, Fudan UniversityShanghai200433China
State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information Technology, Chinese Academy of SciencesShanghai200050China
Department of ChemistryCollege of Science, King Saud UniversityP.O. Box 2455, Riyadh11451Saudi Arabia
Show Author Information

Graphical Abstract

Abstract

Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembly strategy holds great promising in fabricating ordered mesoporous materials with multifunctionality and pore parameter tunability. Combing these, herein, one-dimensional (1D) nanochains with well-aligned silica-coated magnetic particles as core and mesoporous aluminosilicate as shell are rational fabricated for the first time through magnetic field induced interface coassembly in biliquid system followed by the incorporation of Al species via in-situ chemical modification and transformation strategy. The obtained magnetic mesoporous aluminosilicate nanochains (MMAS-NCs) possess well-defined core–shell–shell sandwich nanostructure, tunable perpendicular mesopore channels in the shell (2.7–7.6 nm), high surface area (359 m2·g-1), abundant acidic sites, and superparamagnetism with a magnetization saturation of 13.8 emu·g-1. Thanks to the unique properties, the MMAS-NCs exhibit excellent performance in acting as magnetically recyclable superior solid acid catalysts and nanostirrers with high conversion of over 96.8%, selectivity of 95.0% in the deprotection reaction of benzaldehyde dimethylacetal to benzaldehyde. Moreover, MMAS-NCs exhibit an interesting pore size effect on the catalytic activity, namely, in the pore size range of 2–8 nm, the catalysts with larger pores show significantly enhanced catalytic activity due to the balanced mass transport and density of surface active sites.

Electronic Supplementary Material

Download File(s)
12274_2021_3383_MOESM1_ESM.pdf (3.4 MB)

References

1

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.

2

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.

3

Che, S. N.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281-284.

4

Kim, H. S.; Hong, S. G.; Woo, K. M.; Seijas, V. T.; Kim, S.; Lee, J.; Kim, J. Precipitation-based nanoscale enzyme reactor with improved loading, stability, and mass transfer for enzymatic CO2 conversion and utilization. ACS Catal. 2018, 8, 6526-6536.

5

Deng, X. H.; Schmidt, W. N.; Tüysüz, H. Impacts of geometry, symmetry, and morphology of nanocast Co3O4 on its catalytic activity for water oxidation. Chem. Mater. 2014, 26, 6127-6134.

6

Wang, H. J.; Ishihara, S.; Ariga, K.; Yamauchi, Y. All-metal layer- by-layer films: Bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis. J. Am. Chem. Soc. 2012, 134, 10819- 10821.

7

Wang, X.; Bai, L. C.; Liu, H. Y.; Yu, X. F.; Yin, Y. D.; Gao, C. B. A unique disintegration-reassembly route to mesoporous titania nanocrystalline hollow spheres with enhanced photocatalytic activity. Adv. Funct. Mater. 2018, 28, 1704208.

8

He, Q. J.; Gao, Y.; Zhang, L. X.; Zhang, Z. W.; Gao, F.; Ji, X. F.; Li, Y. P.; Shi, J. L. A pH-responsive mesoporous silica nanoparticles- based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 2011, 32, 7711-7720.

9

Urata, C.; Yamada, H.; Wakabayashi, R.; Aoyama, Y.; Hirosawa, S.; Arai, S.; Takeoka, S.; Yamauchi, Y.; Kuroda, K. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J. Am. Chem. Soc. 2011, 133, 8102-8105.

10

Liu, J.; Liu, T. T.; Pan, J.; Liu, S. M.; Lu, G. Q. Advances in multicompartment mesoporous silica micro/nanoparticles for theranostic applications. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 389-411.

11

Xie, S. Y.; Wu, S. S.; Bao, S. H.; Wang, Y. Q.; Zheng, Y. T.; Deng, D. F.; Huang, L. P.; Zhang, L. L.; Lee, M.; Huang, Z. G. Intelligent mesoporous materials for selective adsorption and mechanical release of organic pollutants from water. Adv. Mater. 2018, 30, 1800683.

12

Clemments, A. M.; Botella, P.; Landry, C. C. Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy. J. Am. Chem. Soc. 2017, 139, 3978-3981.

13

Qu, W. H.; Han, F.; Lu, A. H.; Xing, C.; Qiao, M.; Li, W. C. Combination of a SnO2-C hybrid anode and a tubular mesoporous carbon cathode in a high energy density non-aqueous lithium ion capacitor: Preparation and characterisation. J. Mater. Chem. A 2014, 2, 6549-6557.

14

Kim, N.; Park, H.; Yoon, N.; Lee, J. K. Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 2018, 12, 3853-3864.

15

Lu, A. H.; Zhang, X. Q.; Sun, Q.; Zhang, Y.; Song, Q. W.; Schüth, F.; Chen, C. Y.; Cheng, F. Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. Nano Res. 2016, 9, 1460-1469.

16

Thorat, N. D.; Bohara, R. A.; Malgras, V.; Tofail, S. A. M.; Ahamad, T.; Alshehri, S. M.; Wu, K. C. W.; Yamauchi, Y. Multimodal superparamagnetic nanoparticles with unusually enhanced specific absorption rate for synergetic cancer therapeutics and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2016, 8, 14656-14664.

17

Jin, M. J.; Lee, D. H. A practical heterogeneous catalyst for the suzuki, sonogashira, and stille coupling reactions of unreactive aryl chlorides. Angew. Chem., Int. Ed. 2010, 49, 1119-1122.

18

Ge, J. P.; Huynh, T.; Hu, Y. X.; Yin, Y. D. Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Lett. 2008, 8, 931-934.

19

Chen, Z.; Wu, C.; Zhang, Z. F.; Wu, W. P.; Wang, X. F.; Yu, Z. Q. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett. 2018, 29, 1601-1608.

20

Yu, J.; Zhao, F.; Gao, W. L.; Yang, X.; Ju, Y. M.; Zhao, L. Y.; Guo, W. S.; Xie, J.; Liang, X. J.; Tao, X. Y. et al. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano 2019, 13, 10002-10014.

21

Sharma, S. K.; Shrivastava, N.; Rossi, F.; Tung, L. D.; Thanh, N. T. K. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today 2019, 29, 100795.

22

Kim, J.; Piao, Y. Z.; Lee, N.; Park, Y. I.; Lee, I. H.; Lee, I. H.; Paik, S. R.; Hyeon, T. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv. Mater. 2010, 22, 57-60.

23

Xuan, M. J.; Shao, J. X.; Zhao, J.; Li, Q.; Dai, L. R.; Li, J. B. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: Applications in cancer therapy. Angew. Chem., Int. Ed. 2018, 57, 6049-6053.

24

Sun, Z. K.; Zhou, X. R.; Luo, W.; Yue, Q.; Zhang, Y.; Cheng, X. W.; Li, W.; Kong, B.; Deng, Y. H.; Zhao, D. Y. Interfacial engineering of magnetic particles with porous shells: Towards magnetic core-porous shell microparticles. Nano Today 2016, 11, 464-482.

25

Li, Z. W.; Wang, M. S.; Zhang, X. L.; Wang, D. W.; Xu, W. J.; Yin, Y. D. Magnetic assembly of nanocubes for orientation-dependent photonic responses. Nano Lett. 2019, 19, 6673-6680.

26

Lin, F. C.; Zink, J. I. Probing the local nanoscale heating mechanism of a magnetic core in mesoporous silica drug-delivery nanoparticles using fluorescence depolarization. J. Am. Chem. Soc. 2020, 142, 5212-5220.

27

Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438-8441.

28

Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916-8917.

29

Kim, M. I.; Ye, Y. J.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868-2875.

30

Su, H. Y.; Tian, Q.; Price, C. A. H.; Xu, L.; Qian, K.; Liu, J. Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. Nano Today 2020, 30, 100834.

31

Yang, J. P.; Zhang, F.; Li, W.; Gu, D.; Shen, D. K.; Fan, J. W.; Zhang, W. X.; Zhao, D. Y. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chem. Commun. 2014, 50, 713-715.

32

Yang, J. P.; Qian, X. F.; Chen, M. J.; Fan, J. W.; Liu, H. K.; Zhang, W. X. A triblock-copolymer-templating route to carbon spheres@SBA-15 large mesopore core-shell and hollow structures. RSC Adv. 2014, 4, 48676-48681.

33

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.

34

Yue, Q.; Li, J. L.; Luo, W.; Zhang, Y.; Elzatahry, A. A.; Wang, X. Q.; Wang, C.; Li, W.; Cheng, X. W.; Alghamdi, A. et al. An interface coassembly in biliquid phase: Toward core-shell magnetic mesoporous silica microspheres with tunable pore size. J. Am. Chem. Soc. 2015, 137, 13282-13289.

35

Wang, Y. R.; Lang, N.; Tuel, A. Nature and acidity of aluminum species in AlMCM-41 with a high aluminum content (Si/Al = 1.25). Micropor. Mesopor. Mater. 2006, 93, 46-54.

36

Li, Y. S.; Shi, J. L.; Hua, Z. L.; Chen, H. R.; Ruan, M. L.; Yan, D. S. Hollow spheres of mesoporous aluminosilicate with a three- dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett. 2003, 3, 609-612.

37

Srinivasu, P.; Alam, S.; Balasubramanian, V. V.; Velmathi, S.; Sawant, D. P.; Böhlmann, W.; Mirajkar, S. P.; Ariga, K.; Halligudi, S. B.; Vinu, A. Novel three dimensional cubic Fm3m mesoporous aluminosilicates with tailored cage type pore structure and high aluminum content. Adv. Funct. Mater. 2008, 18, 640-651.

38

Zhang, Y.; Yue, Q.; Yu, L.; Yang, X. Y.; Hou, X. F.; Zhao, D. Y.; Cheng, X. W.; Deng, Y. H. Amphiphilic block copolymers directed interface coassembly to construct multifunctional microspheres with magnetic core and monolayer mesoporous aluminosilicate shell. Adv. Mater. 2018, 30, 1800345.

39

Kralj, S.; Makovec, D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 2015, 9, 9700-9707.

40

Hu, Y. X.; He, L.; Yin, Y. D. Magnetically responsive photonic nanochains. Angew. Chem., Int. Ed. 2011, 50, 3747-3750.

41

He, L.; Wang, M. S.; Ge, J. P.; Yin, Y. D. Magnetic assembly route to colloidal responsive photonic nanostructures. Acc. Chem. Res. 2012, 45, 1431-1440.

42

Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem., Int. Ed. 2009, 48, 5875-5879.

43

Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem., Int. Ed. 2007, 46, 4342-4345.

44

Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core- shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503-2514.

45

Sakthivel, A.; Dapurkar, S. E.; Gupta, N. M.; Kulshreshtha, S. K.; Selvam, P. The influence of aluminium sources on the acidic behaviour as well as on the catalytic activity of mesoporous H-AlMCM-41 molecular sieves. Micropor. Mesopor. Mater. 2003, 65, 177-187.

46

Ding, J.; Fan, S. Y.; Chen, P. J.; Deng, T.; Liu, Y.; Lu, Y. Vapor- phase transport synthesis of microfibrous-structured SS-fiber@ZSM-5 catalyst with improved selectivity and stability for methanol-to- propylene. Catal. Sci. Technol. 2017, 7, 2087-2100.

47

Connell, G.; Dumesic, J. A. Acidic properties of binary oxide catalysts: I. Mössbauer spectroscopy and pyridine adsorption for iron supported on silica. J. Catal. 1986, 101, 103-113.

48

Wu, Y. T.; Chai, J. L.; Li, X. Q.; Yang, B.; Shang, S. C.; Lu, J. J. Effect of alkane/water ratios on the phase behavior and the solubilization of microemulsion systems containing hexadecyltrimethylammonium bromide. J. Chem. Eng. Data 2011, 56, 3089-3094.

49

Iwamoto, M.; Tanaka, Y.; Sawamura, N.; Namba, S. Remarkable effect of pore size on the catalytic activity of mesoporous silica for the acetalization of cyclohexanone with methanol. J. Am. Chem. Soc. 2003, 125, 13032-13033.

50

Yamamoto, T.; Mori, S.; Shishido, T.; Kawai, J.; Tanaka, T. Pore-size dependence of the acidic property of mesoporous silica FSM-16. Top. Catal. 2009, 52, 657-663.

51

Osuga, R.; Hiyoshi, Y.; Yokoi, T.; Kondo, J. N. Reaction-probe infrared investigation on drastic change in reactivity of mesoporous silica for acetalization of cyclohexanone with methanol; pore-size dependence. Micropor. Mesopor. Mater. 2019, 278, 91-98.

52

Umegaki, T.; Ogawa, R.; Ohki, S.; Tansho, M.; Shimizu, T.; Kojima, Y. Control of pore size in shell of hollow silica-alumina composite spheres for hydrolytic dehydrogenation of ammonia borane. J. Porous Mat. 2019, 26, 611-617.

Nano Research
Pages 4197-4203
Cite this article:
Zhang T, Yue Q, Pan P, et al. One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. Nano Research, 2021, 14(11): 4197-4203. https://doi.org/10.1007/s12274-021-3383-2
Topics:

781

Views

12

Crossref

11

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 21 November 2020
Revised: 31 January 2021
Accepted: 03 February 2021
Published: 03 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return