AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes

Zhong-Hai Ji1,2Lili Zhang1Dai-Ming Tang3( )Chien-Ming Chen4Torbjörn E. M. Nordling4,5Zheng-De Zhang6Cui-Lan Ren6Bo Da7Xin Li1,2Shu-Yu Guo1Chang Liu1( )Hui-Ming Cheng1,8
Shenyang National Laboratory for Materials Science Institute of Metal Research (IMR) Chinese Academy of SciencesShenyang 110016 China
School of Materials Science and Engineering University of Science and Technology of ChinaHefei 230026 China
International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS)1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
Department of Mechanical Engineering "National Cheng Kung University", No. 1, University RoadTaiwan China
Department of Applied Physics and Electronics Umeå University 90187 Umeå, Sweden
Shanghai Institute of Applied Physics Chinese Academy of SciencesShanghai 201800 China
Research and Services Division of Materials Data and Integrated System National Institute for Materials Science (NIMS)Ibaraki 305-0047 Japan
Tsinghua-Berkeley Shenzhen Institute (TBSI) Tsinghua UniversityShenzhen 518055 China
Show Author Information

Graphical Abstract

Abstract

It has been a great challenge to optimize the growth conditions toward structure-controlled growth of single-wall carbon nanotubes (SWCNTs). Here, a high-throughput method combined with machine learning is reported that efficiently screens the growth conditions for the synthesis of high-quality SWCNTs. Patterned cobalt (Co) nanoparticles were deposited on a numerically marked silicon wafer as catalysts, and parameters of temperature, reduction time and carbon precursor were optimized. The crystallinity of the SWCNTs was characterized by Raman spectroscopy where the featured G/D peak intensity (IG/ID) was extracted automatically and mapped to the growth parameters to build a database. 1, 280 data were collected to train machine learning models. Random forest regression (RFR) showed high precision in predicting the growth conditions for high-quality SWCNTs, as validated by further chemical vapor deposition (CVD) growth. This method shows great potential in structure-controlled growth of SWCNTs.

Electronic Supplementary Material

Download File(s)
12274_2021_3387_MOESM1_ESM.pdf (6 MB)

References

1

Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756–11784.

2

Ding, F.; Rosén, A.; Bolton, K. Dependence of SWNT growth mechanism on temperature and catalyst particle size: Bulk versus surface diffusion. Carbon 2005, 43, 2215–2217.

3

Ding, F.; Bolton, K.; Rosén, A. Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput. Mater. Sci. 2006, 35, 243–246.

4

Xu, Z. W.; Yan, T. Y.; Ding, F. Atomistic simulation of the growth of defect-free carbon nanotubes. Chem. Sci. 2015, 6, 4704–4711.

5

Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science. APL Mater. 2016, 4, 053208.

6

Kind, H.; Bonard, J. M.; Emmenegger, C.; Nilsson, L. O.; Hernadi, K.; Maillard-Schaller, E.; Schlapbach, L.; Forró, L.; Kern, K. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater. 1999, 11, 1285–1289.

7

Cassell, A. M.; Verma, S.; Delzeit, L.; Meyyappan, M.; Han, J. Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes. Langmuir 2001, 17, 260–264.

8

Cassell, A. M.; Ye, Q.; Cruden, B. A.; Li, J.; Sarrazin, P. C.; Ng, H. T.; Han, J.; Meyyappan, M. Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices. Nanotechnology 2003, 15, 9.

9

Noda, S.; Tsuji, Y.; Murakami, Y.; Maruyama, S. Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes. Appl. Phys. Lett. 2005, 86, 173106.

10

Oliver, C. R.; Westrick, W.; Koehler, J.; Brieland-Shoultz, A.; Anagnostopoulos-Politis, I.; Cruz-Gonzalez, T.; Hart, A. J. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery. Rev. Sci. Instrum. 2013, 84, 115105.

11

Nikolaev, P.; Hooper, D.; Perea-Lopez, N.; Terrones, M.; Maruyama, B. Discovery of wall-selective carbon nanotube growth conditions via automated experimentation. ACS Nano 2014, 8, 10214–10222.

12

Sugime, H.; Sato, T.; Nakagawa, R.; Cepek, C.; Noda, S. Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes. ACS Nano 2019, 13, 13208–13216.

13

Hasegawa, K.; Noda, S. Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. ACS Nano 2011, 5, 975–984.

14

Chen, Z. M.; Kim, D. Y.; Hasegawa, K.; Noda, S. Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter. ACS Nano 2013, 7, 6719–6728.

15

Kluender, E. J.; Hedrick, J. L.; Brown, K. A.; Rao, R.; Meckes, B.; Du, J. S.; Moreau, L. M.; Maruyama, B.; Mirkin, C. A. Catalyst discovery through megalibraries of nanomaterials. Proc. Natl. Acad. Sci. USA 2019, 116, 40–45.

16

Nikolaev, P.; Hooper, D.; Webber, F.; Rao, R.; Decker, K.; Krein, M.; Poleski, J.; Barto, R.; Maruyama, B. Autonomy in materials research: A case study in carbon nanotube growth. npj Comput. Mater. 2016, 2, 16031.

17

Abad, S. N. K.; Ganjeh, E.; Zolriasatein, A.; Shabani-Nia, F.; Siadati, M. H. Predicting carbon nanotube diameter using artificial neural network along with characterization and field emission measure­ment. Iran. J. Sci. Technol. Trans. A: Sci. 2017, 41, 151–163.

18

Iakovlev, V. Y.; Krasnikov, D. V.; Khabushev, E. M.; Kolodiazhnaia, J. V.; Nasibulin, A. G. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 2019, 153, 100–103.

19

Chang, J.; Nikolaev, P.; Carpena-Núñez, J.; Rao, R.; Decker, K.; Islam, A. E.; Kim, J.; Pitt, M. A.; Myung, J. I.; Maruyama, B. Efficient closed-loop maximization of carbon nanotube growth rate using bayesian optimization. Sci. Rep. 2020, 10, 9040.

20

Wang, H.; Yuan, Y.; Wei, L.; Goh, K.; Yu, D. S.; Chen, Y. Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 2015, 81, 1–19.

21

Wang, J. S.; Yoo, Y.; Gao, C.; Takeuchi, I.; Sun, X. D.; Chang, H.; Xiang, X. D.; Schultz, P. G. Identification of a blue photoluminescent composite material from a combinatorial library. Science 1998, 279, 1712–1714.

22

Dresselhaus, M. S.; Jorio, A.; Filho, A. G. S.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 2010, 368, 5355–5377.

23

Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133.

24

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.

25

Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

26

Zhang, F.; Hou, P. X.; Liu, C.; Wang, B. W.; Jiang, H.; Chen, M. L.; Sun, D. M.; Li, J. C.; Cong, H. T.; Kauppinen, E. I. et al. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat. Commun. 2016, 7, 11160.

27

Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

28

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R. Dubourg, V. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

29
Chollet, F. Keras: The Python Deep Learning library; Astrophysics Source Code Library, 2018. https://keras.io/ (accessed Nov 9, 2020).
30

Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16.

31
Nair, V.; Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010, pp 807–814.
32
Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. 2014, arXiv: 1412.6980. arXiv. org e-Print archive. https://arxiv.org/abs/1412.6980v1 (accessed Dec 22, 2014).
33

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.

34

Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958.

Nano Research
Pages 4610-4615
Cite this article:
Ji Z-H, Zhang L, Tang D-M, et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Research, 2021, 14(12): 4610-4615. https://doi.org/10.1007/s12274-021-3387-y
Topics:

1056

Views

15

Crossref

14

Web of Science

15

Scopus

3

CSCD

Altmetrics

Received: 09 November 2020
Revised: 23 January 2021
Accepted: 05 February 2021
Published: 18 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return