Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It has been a great challenge to optimize the growth conditions toward structure-controlled growth of single-wall carbon nanotubes (SWCNTs). Here, a high-throughput method combined with machine learning is reported that efficiently screens the growth conditions for the synthesis of high-quality SWCNTs. Patterned cobalt (Co) nanoparticles were deposited on a numerically marked silicon wafer as catalysts, and parameters of temperature, reduction time and carbon precursor were optimized. The crystallinity of the SWCNTs was characterized by Raman spectroscopy where the featured G/D peak intensity (IG/ID) was extracted automatically and mapped to the growth parameters to build a database. 1, 280 data were collected to train machine learning models. Random forest regression (RFR) showed high precision in predicting the growth conditions for high-quality SWCNTs, as validated by further chemical vapor deposition (CVD) growth. This method shows great potential in structure-controlled growth of SWCNTs.
Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756–11784.
Ding, F.; Rosén, A.; Bolton, K. Dependence of SWNT growth mechanism on temperature and catalyst particle size: Bulk versus surface diffusion. Carbon 2005, 43, 2215–2217.
Ding, F.; Bolton, K.; Rosén, A. Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput. Mater. Sci. 2006, 35, 243–246.
Xu, Z. W.; Yan, T. Y.; Ding, F. Atomistic simulation of the growth of defect-free carbon nanotubes. Chem. Sci. 2015, 6, 4704–4711.
Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science. APL Mater. 2016, 4, 053208.
Kind, H.; Bonard, J. M.; Emmenegger, C.; Nilsson, L. O.; Hernadi, K.; Maillard-Schaller, E.; Schlapbach, L.; Forró, L.; Kern, K. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater. 1999, 11, 1285–1289.
Cassell, A. M.; Verma, S.; Delzeit, L.; Meyyappan, M.; Han, J. Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes. Langmuir 2001, 17, 260–264.
Cassell, A. M.; Ye, Q.; Cruden, B. A.; Li, J.; Sarrazin, P. C.; Ng, H. T.; Han, J.; Meyyappan, M. Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices. Nanotechnology 2003, 15, 9.
Noda, S.; Tsuji, Y.; Murakami, Y.; Maruyama, S. Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes. Appl. Phys. Lett. 2005, 86, 173106.
Oliver, C. R.; Westrick, W.; Koehler, J.; Brieland-Shoultz, A.; Anagnostopoulos-Politis, I.; Cruz-Gonzalez, T.; Hart, A. J. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery. Rev. Sci. Instrum. 2013, 84, 115105.
Nikolaev, P.; Hooper, D.; Perea-Lopez, N.; Terrones, M.; Maruyama, B. Discovery of wall-selective carbon nanotube growth conditions via automated experimentation. ACS Nano 2014, 8, 10214–10222.
Sugime, H.; Sato, T.; Nakagawa, R.; Cepek, C.; Noda, S. Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes. ACS Nano 2019, 13, 13208–13216.
Hasegawa, K.; Noda, S. Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. ACS Nano 2011, 5, 975–984.
Chen, Z. M.; Kim, D. Y.; Hasegawa, K.; Noda, S. Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter. ACS Nano 2013, 7, 6719–6728.
Kluender, E. J.; Hedrick, J. L.; Brown, K. A.; Rao, R.; Meckes, B.; Du, J. S.; Moreau, L. M.; Maruyama, B.; Mirkin, C. A. Catalyst discovery through megalibraries of nanomaterials. Proc. Natl. Acad. Sci. USA 2019, 116, 40–45.
Nikolaev, P.; Hooper, D.; Webber, F.; Rao, R.; Decker, K.; Krein, M.; Poleski, J.; Barto, R.; Maruyama, B. Autonomy in materials research: A case study in carbon nanotube growth. npj Comput. Mater. 2016, 2, 16031.
Abad, S. N. K.; Ganjeh, E.; Zolriasatein, A.; Shabani-Nia, F.; Siadati, M. H. Predicting carbon nanotube diameter using artificial neural network along with characterization and field emission measurement. Iran. J. Sci. Technol. Trans. A: Sci. 2017, 41, 151–163.
Iakovlev, V. Y.; Krasnikov, D. V.; Khabushev, E. M.; Kolodiazhnaia, J. V.; Nasibulin, A. G. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 2019, 153, 100–103.
Chang, J.; Nikolaev, P.; Carpena-Núñez, J.; Rao, R.; Decker, K.; Islam, A. E.; Kim, J.; Pitt, M. A.; Myung, J. I.; Maruyama, B. Efficient closed-loop maximization of carbon nanotube growth rate using bayesian optimization. Sci. Rep. 2020, 10, 9040.
Wang, H.; Yuan, Y.; Wei, L.; Goh, K.; Yu, D. S.; Chen, Y. Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 2015, 81, 1–19.
Wang, J. S.; Yoo, Y.; Gao, C.; Takeuchi, I.; Sun, X. D.; Chang, H.; Xiang, X. D.; Schultz, P. G. Identification of a blue photoluminescent composite material from a combinatorial library. Science 1998, 279, 1712–1714.
Dresselhaus, M. S.; Jorio, A.; Filho, A. G. S.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 2010, 368, 5355–5377.
Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133.
Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.
Zhang, F.; Hou, P. X.; Liu, C.; Wang, B. W.; Jiang, H.; Chen, M. L.; Sun, D. M.; Li, J. C.; Cong, H. T.; Kauppinen, E. I. et al. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat. Commun. 2016, 7, 11160.
Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R. Dubourg, V. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16.
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958.