AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Functional photonic structures for external interaction with flexible/wearable devices

Young Jin Yoo1,§Se-Yeon Heo1,§Yeong Jae Kim2,§Joo Hwan Ko1Zafrin Ferdous Mira1Young Min Song1,3,4( )
School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Bukgu, Gwangju 61005, Republic of Korea
Korea Institute of Ceramic Engineering & Technology, Ceramics Test-Bed Center, 3321 Gyeongchung-daero, Sindun-myeon, Icheon-si Gyeonggi-do 17303, Republic of Korea
Anti-Viral Research Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Bukgu, Gwangju 61005, Republic of Korea
AI Graduate School, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Bukgu, Gwangju 61005, Republic of Korea

§ Young Jin Yoo, Se-Yeon Heo, and Yeong Jae Kim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In addition to vital functions, more subsidiary functions are being expected from wearable devices. The wearable technology thus far has achieved the ability to maintain homeostasis by continuously monitoring physiological signals. The quality of life improves if, through further developments of wearable devices to detect, announce, and even control unperceptive or noxious signals from the environment. Soft materials based on photonic engineering can fulfil the abovementioned functions. Due to the flexibility and zero-power operation of such materials, they can be applied to conventional wearables without affecting existing functions. The achievements to freely tailoring a broad range of electromagnetic waves have encouraged the development of wearable systems for independent recognition/manipulation of light, pollution, chemicals, viruses and heat. Herein, the role that photonic engineering on a flexible platform plays in detecting or reacting to environmental changes is reviewed in terms of material selection, structural design, and regulation mechanisms from the ultraviolet to infrared spectral regions. Moreover, issues emerging with the evolution of the wearable technology, such as Joule heating, battery durability, and user privacy, and the potential solution strategies are discussed. This article provides a systematic review of current progress in wearable devices based on photonic structures as well as an overview of possible ubiquitous advances and their applications, providing diachronic perspectives and future outlook on the rapidly growing research field of wearable technology.

References

[1]
Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70-74.
[2]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[3]
Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397-404.
[4]
Hong, Y. J.; Lee, H.; Kim, J.; Lee, M.; Choi, H. J.; Hyeon, T.; Kim, D. H. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv. Funct. Mater. 2018, 28, 1805754.
[5]
Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Xu, G. W.; Wang, Q. W.; Liu, S. X.; Li, J.; Chen, C. J.; Yu, H. P.; Hu, L. B. A dynamic gel with reversible and tunable topological networks and performances. Matter 2020, 2, 390-403.
[6]
Chen, S. M.; Gao, H. L.; Sun, X. H.; Ma, Z. Y.; Ma, T.; Xia, J.; Zhu, Y. B.; Zhao, R.; Yao, H. B.; Wu, H. A. et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy. Matter 2019, 1, 412-427.
[7]
Kang, J. H.; Son, D. H.; Wang, G. J. N.; Liu, Y. X.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.
[8]
Sung, S. H.; Kim, Y. S.; Joe, D. J.; Mun, B. H.; You, B. K.; Hahn, S. K.; Berggren, M.; Kim, D.; Lee, K. J. Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy 2018, 51, 102-112.
[9]
Jang, K. I.; Han, S. Y.; Xu, S.; Mathewson, K. E.; Zhang, Y. H.; Jeong, J. W.; Kim, G. T.; Webb, R. C.; Lee, J. W.; Dawidczyk, T. J. et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 2014, 5, 4779.
[10]
Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211-216.
[11]
Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Trans. Med. 2016, 8, 366ra165.
[12]
Kim, J.; Gutruf, P.; Chiarelli, A. M.; Heo, S. Y.; Cho, K.; Xie, Z. Q.; Banks, A.; Han, S.; Jang, K. I.; Lee, J. W. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 2017, 27, 1604373.
[13]
Seshadri, D. R.; Li, R. T.; Voos, J. E.; Rowbottom, J. R.; Alfes, C. M.; Zorman, C. A.; Drummond, C. K. Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digit. Med. 2019, 2, 72.
[14]
Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S. W.; Gaitonde, S.; Begtrup, G.; Katchman, B. A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407-419.
[15]
Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.
[16]
Xu, X.; Chen, J.; Cai, S.; Long, Z.; Zhang, Y.; Su, L.; He, S.; Tang, C.; Liu, P.; Peng, H. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 2018, 30, 1803165.
[17]
Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.
[18]
Yao, J. D.; Yang, G. W. Flexible and high-performance all-2D photodetector for wearable devices. Small 2018, 14, 1704524.
[19]
Choi, J.; Bandodkar, A. J.; Reeder, J. T.; Ray, T. R.; Turnquist, A.; Kim, S. B.; Nyberg, N.; Hourlier-Fargette, A.; Model, J. B.; Aranyosi, A. J. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens. 2019, 4, 379-388.
[20]
Cai, Z. Y.; Smith, N. L.; Zhang, J. T.; Asher, S. A. Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 2015, 87, 5013-5025.
[21]
Yamamoto, Y.; Yamamoto, D.; Takada, M.; Naito, H.; Arie, T.; Akita, S.; Takei, K. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv. Healthc. Mater. 2017, 6, 1700495.
[22]
Tsuchiya, M.; Kurashina, Y.; Onoe, H. Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads. Sci. Rep. 2019, 9, 17059.
[23]
Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070.
[24]
Shafiee, H.; Lidstone, E. A.; Jahangir, M.; Inci, F.; Hanhauser, E.; Henrich, T. J.; Kuritzkes, D. R.; Cunningham, B. T.; Demirci, U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 2014, 4, 4116.
[25]
Lee, N.; Wang, C.; Park, J. User-friendly point-of-care detection of influenza a (H1N1) virus using light guide in three-dimensional photonic crystal. RSC Adv. 2018, 8, 22991-22997.
[26]
Wang, F.; Gopinath, S. C. B.; Lakshmipriya, T. Aptamer-antibody complementation on multiwalled carbon nanotube-gold transduced dielectrode surfaces to detect pandemic swine influenza virus. Int. J. Nanomed. 2019, 14, 8469-8481.
[27]
Choe, A.; Yeom, J.; Shanker, R.; Kim, M. P.; Kang, S.; Ko, H. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 2018, 10, 912-922.
[28]
Hong, S.; Gu, Y.; Seo, J. K.; Wang, J.; Liu, P.; Meng, Y. S.; Xu, S.; Chen, R. K. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 2019, 5, eaaw0536.
[29]
Malakooti, M. H.; Kazem, N.; Yan, J. J.; Pan, C. F.; Markvicka, E. J.; Matyjaszewski, K.; Majidi, C. Liquid metal supercooling for low-temperature thermoelectric wearables. Adv. Funct. Mater. 2019, 29, 1906098.
[30]
Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205-213.
[31]
Hawkeye, M. M.; Brett, M. J. Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition. Adv. Funct. Mater. 2011, 21, 3652-3658.
[32]
Ye, B. F.; Rong, F.; Gu, H. C.; Xie, Z. Y Cheng, Y.; Zhao, Y. J.; Gu, Z. Z. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem. Commun. 2013, 49, 5331-5333.
[33]
Ye, B. F.; Ding, H. B.; Cheng, Y.; Gu, H. C.; Zhao, Y. J.; Xie, Z. Y.; Gu, Z. Z. Photonic crystal microcapsules for label-free multiplex detection. Adv. Mater. 2014, 26, 3270-3274.
[34]
Qin, M.; Sun, M.; Bai, R. B.; Mao, Y. Q.; Qian, X. S.; Sikka, D.; Zhao, Y.; Qi, H. J.; Suo, Z. G.; He, X. M. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv. Mater. 2018, 30, 1800468.
[35]
Holtz, J. H.; Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389, 829-832.
[36]
Saito, H.; Takeoka, Y.; Watanabe, M. Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem. Commun. 2003, 2126-2127.
[37]
Lim, H. S.; Lee, J. H.; Walish, J. J.; Thomas, E. L. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 2012, 6, 8933-8939.
[38]
Lova, P.; Manfredi, G.; Boarino, L.; Comite, A.; Laus, M.; Patrini, M.; Marabelli, F.; Soci, C.; Comoretto, D. Polymer distributed Bragg reflectors for vapor sensing. ACS Photonics 2015, 2, 537-543.
[39]
Kim, C.; Lee, H.; Devaraj, V.; Kim, W. G.; Lee, Y.; Kim, Y.; Jeong, N. N.; Choi, E. J.; Baek, S. H.; Han, D. W. et al. Hierarchical cluster analysis of medical chemicals detected by a bacteriophage-based colorimetric sensor array. Nanomaterials 2020, 10, 121.
[40]
Oh, H. J.; Yeang, B. J.; Park, Y. K.; Choi, H. J.; Kim, J. H.; Kang, Y. S.; Bae, Y.; Kim, J. Y.; Lim, S. J.; Lee, W. Washable colorimetric nanofiber nonwoven for ammonia gas detection. Polymers 2020, 12, 1585.
[41]
Chi, H.; Ze, L. J.; Zhou, X. M.; Wang, F. K. Go film on flexible substrate: An approach to wearable colorimetric humidity sensor. Dyes Pigm. 2021, 185, 108916.
[42]
Qin, M.; Sun, M.; Hua, M. T.; He, X. M. Bioinspired structural color sensors based on responsive soft materials. Curr. Opin. Solid State Mater. Sci. 2019, 23, 13-27.
[43]
Choi, J.; Hua, M.; Lee, S. Y.; Jo, W.; Lo, C. Y.; Kim, S. H.; Kim, H. T.; He, X. M. Hydrocipher: Bioinspired dynamic structural color-based cryptographic surface. Adv. Opt. Mater. 2020, 8, 1901259.
[44]
Fathi, F.; Rashidi, M. R.; Pakchin, P. S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021, 221, 121615.
[45]
Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153-158.
[46]
Zhang, H. W.; Ly, K. C. S.; Liu, X. H.; Chen, Z. H.; Yan, M.; Wu, Z. L.; Wang, X.; Zheng, Y. B.; Zhou, H.; Fan, T. X. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 14657-14666.
[47]
Wang, X.; Liu, X. H.; Li, Z. Y.; Zhang, H. W.; Yang, Z. W.; Zhou, H.; Fan, T. X. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 2020, 30, 1907562.
[48]
Yang, M.; Zou, W. Z.; Guo, J.; Qian, Z. C.; Luo, H.; Yang, S. J.; Zhao, N.; Pattelli, L.; Xu, J.; Wiersma, D. S. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces 2020, 12, 25286-25293.
[49]
Zhu, H. Z.; Li, Q.; Zheng, C. Q.; Hong, Y.; Xu, Z. Q.; Wang, H.; Shen, W. D.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 2020, 9, 60.
[50]
Park, C.; Kim, J.; Hahn, J. W. Selective emitter with engineered anisotropic radiation to minimize dual-band thermal signature for infrared stealth technology. ACS Appl. Mater. Interfaces 2020, 12, 43090-43097.
[51]
Zhu, H. Z.; Li, Q.; Tao, C. N.; Hong, Y.; Xu, Z. Q.; Shen, W. D.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. 2020, . Research Square. https://www.researchsquare.com/article/rs-40658/v1 (accessed Dec 28, 2020).
[52]
Pan, M. Y.; Huang, Y.; Li, Q.; Luo, H.; Zhu, H. Z.; Kaur, S.; Qiu, M. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 2020, 69, 104449.
[53]
Xiao, L.; Ma, H.; Liu, J. K.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S. S. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/cnt thin films. Nano Lett. 2015, 15, 8365-8370.
[54]
Kim, J.; Campbell, A. S.; De Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389-406.
[55]
Ghaffari, R.; Choi, J.; Raj, M. S.; Chen, S. L.; Lee, S. P.; Reeder, J. T.; Aranyosi, A. J.; Leech, A.; Li, W. H.; Schon, S. et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 2020, 30, 1907269.
[56]
Someya, T.; Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 2019, 37, 382-388.
[57]
Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149-165.
[58]
Gao, Y. J.; Yu, L. T.; Yeo, J. C.; Lim, C. T. Flexible hybrid sensors for health monitoring: Materials and mechanisms to render wearability. Adv. Mater. 2020, 32, 1902133.
[59]
Bandodkar, A. J.; Jeerapan, I.; Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 2016, 1, 464-482.
[60]
Kim, J.; Campbell, A. S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163-170.
[61]
Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363-371.
[62]
Bandodkar, A. J.; Jia, W. Z.; Wang, J. Tattoo-based wearable electrochemical devices: A review. Electroanalysis 2015, 27, 562-572.
[63]
Campbell, A. S.; Kim, J.; Wang, J. Wearable electrochemical alcohol biosensors. Curr. Opin Electrochem. 2018, 10, 126-135.
[64]
Jia, W. Z.; Bandodkar, A. J.; Valdés-Ramirez, G.; Windmiller, J. R.; Yang, Z. J.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013, 85, 6553-6560.
[65]
Bandodkar, A. J.; Hung, V. W. S.; Jia, W. Z.; Valdés-Ramírez, G.; Windmiller, J. R.; Martinez, A. G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 2013, 138, 123-128.
[66]
Guinovart, T.; Bandodkar, A. J.; Windmiller, J. R.; Andrade, F. J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138, 7031-7038.
[67]
Kim, J.; De Araujo, W. R.; Samek, I. A.; Bandodkar, A. J.; Jia, W. Z.; Brunetti, B.; Paixão, T. R. L. C.; Wang, J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015, 51, 41-45.
[68]
Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N.; Bandodkar, A.; Cinti, S.; Mercier, P. P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016, 1, 1011-1019.
[69]
Bandodkar, A. J.; Jeang, W. J.; Ghaffari, R.; Rogers, J. A. Wearable sensors for biochemical sweat analysis. Ann. Rev. Anal. Chem. 2019, 12, 1-22.
[70]
Mayer, M.; Baeumner, A. J. A megatrend challenging analytical chemistry: Biosensor and chemosensor concepts ready for the internet of things. Chem. Rev. 2019, 119, 7996-8027.
[71]
Zhai, Q.; Cheng, W. Soft and stretchable electrochemical biosensors. Mater. Today Nano 2019, 7, 100041.
[72]
Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160-171.
[73]
Choi, J.; Ghaffari, R.; Baker, L. B.; Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4, eaar3921.
[74]
Nakata, S.; Arie, T.; Akita, S.; Takei, K. Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sens. 2017, 2, 443-448.
[75]
Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed Eng 2017, 1, 0008.
[76]
Van Soest, G.; Regar, E.; Van Der Steen, A. F. W. Photonics in cardiovascular medicine. Nat. Photon. 2015, 9, 626-629.
[77]
Kim, H.; Beack, S.; Han, S.; Shin, M.; Lee, T.; Park, Y.; Kim, K. S.; Yetisen, A. K.; Yun, S. H.; Kwon, W. et al. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv. Mater. 2018, 30, 1701460.
[78]
Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.
[79]
Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.
[80]
Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem. 2016, 128, 3088-3091.
[81]
Hamblin, M. R.; Huang, Y. Y.; Heiskanen, V. Non-mammalian hosts and photobiomodulation: Do all life-forms respond to light? Photochem Photobiol 2019, 95, 126-139.
[82]
Kim, J. H.; Moon, J. H.; Lee, S. Y.; Park, J. Biologically inspired humidity sensor based on three-dimensional photonic crystals. Appl. Phys. Lett. 2010, 97, 103701.
[83]
Potyrailo, R. A.; Bonam, R. K.; Hartley, J. G.; Starkey, T. A.; Vukusic, P.; Vasudev, M.; Bunning, T.; Naik, R. R.; Tang, Z. X.; Palacios, M. A. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat. Commun. 2015, 6, 7959.
[84]
Fu, T.; Zhao, X.; Chen, L.; Wu, W. S.; Zhao, Q.; Wang, X. L.; Guo, D. M.; Wang, Y. Z. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 2019, 29, 1806586.
[85]
Liu, F. F.; Shan, B.; Zhang, S. F.; Tang, B. T. SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength. Langmuir 2018, 34, 3918-3924.
[86]
Bae, K.; Lee, J.; Kang, G. M.; Yoo, D. S.; Lee, C. W.; Kim, K. Refractometric and colorimetric index sensing by a plasmon-coupled hybrid AAO nanotemplate. RSC Adv. 2015, 5, 103052-103059.
[87]
Duan, X. Y.; Liu, N. Scanning plasmonic color display. ACS Nano 2018, 12, 8817-8823.
[88]
Chung, K.; Yu, S.; Heo, C. J.; Shim, J. W.; Yang, S. M.; Han, M. G.; Lee, H. S.; Jin, Y.; Lee, S. Y.; Park, N. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 2012, 24, 2375-2379.
[89]
Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.
[90]
Zhong, K.; Liu, L. W.; Lin, J. Y.; Li, J. Q.; Van Cleuvenbergen, S.; Brullot, W.; Bloemen, M.; Song, K.; Clays, K. Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Adv. Mater. Interfaces 2016, 3, 1600579.
[91]
Kurland, N. E.; Dey, T.; Kundu, S. C.; Yadavalli, V. K. Precise patterning of silk microstructures using photolithography. Adv. Mater. 2013, 25, 6207-6212.
[92]
Liu, W. P.; Zhou, Z. T.; Zhang, S. Q.; Shi, Z. F.; Tabarini, J.; Lee, W.; Zhang, Y. S.; Corder, S. N. G.; Li, X. X.; Dong, F. et al. Precise protein photolithography (p3): High performance biopatterning using silk fibroin light chain as the resist. Adv. Sci. 2017, 4, 1700191.
[93]
Wang, Y.; Aurelio, D.; Li, W. Y.; Tseng, P.; Zheng, Z. Z.; Li, M.; Kaplan, D. L.; Liscidini, M.; Omenetto, F. G. Modulation of multiscale 3D lattices through conformational control: Painting silk inverse opals with water and light. Adv. Mater. 2017, 29, 1702769.
[94]
Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20-24.
[95]
Yoo, Y. J.; Lim, J. H.; Lee, G. J.; Jang, K. I.; Song, Y. M. Ultra-thin films with highly absorbent porous media fine-tunable for coloration and enhanced color purity. Nanoscale 2017, 9, 2986-2991.
[96]
Yoo, Y. J. Y.; Ko, J. H.; Kim, W. G.; Kim, Y. J.; Kong, D. J.; Kim, S.; Oh, J. W.; Song, Y. M. Dual-mode colorimetric sensor based on ultrathin resonating facilitator capable of nanometer-thick virus detection for environment monitoring. ACS Appl. Nano Mater. 2020, 3, 6636-6644.
[97]
Kim, Y. J.; Yoo, Y. J.; Lee, G. J.; Yoo, D. E.; Lee, D. W.; Siva, V.; Song, H.; Kang, I. S.; Song, Y. M. Enlarged color gamut representation enabled by transferable silicon nanowire arrays on metal-insulator-metal films. ACS Appl. Mater. Interfaces 2019, 11, 11849-11856.
[98]
Yoo, Y. J.; Kim, W. G.; Ko, J. H.; Kim, Y. J.; Lee, Y.; Stanciu, S. G.; Lee, J. M.; Kim, S.; Oh, J. W.; Song, Y. M. Large-area virus coated ultrathin colorimetric sensors with a highly lossy resonant promoter for enhanced chromaticity. Adv. Sci. 2020, 7, 2000978.
[99]
Kou, D. H.; Ma, W.; Zhang, S. F.; Lutkenhaus, J. L.; Tang, B. T. High-performance and multifunctional colorimetric humidity sensors based on mesoporous photonic crystals and nanogels. ACS Appl. Mater. Interfaces 2018, 10, 41645-41654.
[100]
Jung, S. H.; Jung, Y. J.; Park, B. C.; Kong, H.; Lim, B.; Park, J. M.; Lee, H. I. Chromophore-free photonic multilayer films for the ultra-sensitive colorimetric detection of nerve agent mimics in the vapor phase. Sens. Actuators B Chem. 2020, 323, 128698.
[101]
Bai, L.; Wang, Z. L.; He, Y. D.; Song, F.; Wang, X. L.; Wang, Y. Z. Flexible photonic cellulose nanocrystal films as a platform with multisensing functions. ACS Sustain Chem. Eng. 2020, 8, 18484-18491.
[102]
Gallego-Gómez, F.; Morales, M.; Blanco, A.; López, C. Bare silica opals for real-time humidity sensing. Adv. Mater. Technol. 2019, 4, 1800493.
[103]
Kim, S.; Mitropoulos, A. N.; Spitzberg, J. D.; Tao, H.; Kaplan, D. L.; Omenetto, F. G. Silk inverse opals. Nat. Photonics 2012, 6, 818-823.
[104]
Jiang, Y. N.; Zhang, X. J.; Xiao, L. Z.; Yan, R. Y.; Xin, J. W.; Yin, C. X.; Jia, Y. X.; Zhao, Y.; Xiao, C. Y.; Zhang, Z. et al. Preparation of dual-emission polyurethane/carbon dots thermoresponsive composite films for colorimetric temperature sensing. Carbon 2020, 163, 36-33.
[105]
Feng, J. F.; Gao, S. Y.; Shi, J. L.; Liu, T. F.; Cao, R. C-QDs@UIO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing. Inorg. Chem. 2018, 57, 2447-2454.
[106]
Zhang, L. F.; Lyu, S. Y.; Zhang, Q. J.; Wu, Y. T.; Melcher, C.; Chmely, S. C.; Chen, Z. L.; Wang, S. Q. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing. Carbohydr. Polym. 2019, 206, 767-777.
[107]
Park, T. H.; Yu, S.; Cho, S. H.; Kang, H. S.; Kim, Y.; Kim, M. J.; Eoh, H.; Park, C.; Jeong, B.; Lee, S. W. et al. Block copolymer structural color strain sensor. NPG Asia Mater. 2018, 10, 328-339.
[108]
Kim, D. Y.; Choi, S.; Cho, H.; Sun, J. Y. Electroactive soft photonic devices for the synesthetic perception of color and sound. Adv. Mater. 2019, 31, 1804080.
[109]
Takeoka, Y.; Watanabe, M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 2003, 19, 9104-9106.
[110]
Wang, H.; Zhang, K. Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13, 4192-4213.
[111]
Tu, K. N.; Liu, Y. X.; Li, M. L. Effect of joule heating and current crowding on electromigration in mobile technology. Appl. Phys. Rev. 2017, 4, 011101.
[112]
Zhu, L. X.; Raman, A.; Wang, K. X.; Anoma, M. A.; Fan, S. H. Radiative cooling of solar cells. Optica 2014, 1, 32-38.
[113]
Dou, S. L.; Xu, H. B.; Zhao, J. P.; Zhang, K.; Li, N.; Lin, Y. P.; Pan, L.; Li, Y. Bioinspired microstructured materials for optical and thermal regulation. Adv. Mater. 2021, 33, 2000697.
[114]
Ahn, J.; Lim, T.; Yeo, C. S.; Hong, T.; Jeong, S. M.; Park, S. Y.; Ju, S. Infrared invisibility cloak based on polyurethane-tin oxide composite microtubes. ACS Appl. Mater. Interfaces 2019, 11, 14296-14304.
[115]
Lee, J.; Sul, H.; Jung, Y.; Kim, H.; Han, S.; Choi, J.; Shin, J.; Kim, D.; Jung, J.; Hong, S. et al. Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv. Funct. Mater. 2020, 30, 2003328.
[116]
Lee, N.; Kim, T.; Lim, J. S.; Chang, I.; Cho, H. H. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation. ACS Appl. Mater. Interfaces 2019, 11, 21250-21257.
[117]
Franklin, D.; Modak, S.; Vázquez-Guardado, A.; Safaei, A.; Chanda, D. Covert infrared image encoding through imprinted plasmonic cavities. Light Sci Appl 2018, 7, 93.
[118]
Lee, G. J.; Kim, D. H.; Heo, S. Y.; Song, Y. M. Spectrally and spatially selective emitters using polymer hybrid spoof plasmonics. ACS Appl. Mater. Interfaces 2020, 12, 53206-53214.
[119]
Qian, Z. Y.; Kang, S.; Rajaram, V.; Cassella, C.; McGruer, N. E.; Rinaldi, M. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. Nat. Nanotechnol. 2017, 12, 969-973.
[120]
Hu, R.; Zhou, S. L.; Li, Y.; Lei, D. Y.; Luo, X. B.; Qiu, C. W. Illusion thermotics. Adv. Mater. 2018, 30, 1707237.
[121]
Xie, X.; Li, X.; Pu, M. B.; Ma, X. L.; Liu, K. P.; Guo, Y. H.; Luo, X. G. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 2018, 28, 1706673.
[122]
Kim, J.; Han, K.; Hahn, J. W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 6740.
[123]
Xu, Z. Q.; Li, Q.; Du, K. K.; Long, S. W.; Yang, Y.; Cao, X.; Luo, H.; Zhu, H. Z.; Ghosh, P.; Shen, W. D. et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser Photonics Rev. 2020, 14, 1900162.
[124]
Bakan, G.; Ayas, S.; Serhatlioglu, M.; Elbuken, C.; Dana, A. Invisible thin-film patterns with strong infrared emission as an optical security feature. Adv. Opt. Mater. 2018, 6, 1800613.
[125]
Raman, A. P.; Anoma, M. A.; Zhu, L. X.; Rephaeli, E.; Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540-544.
[126]
Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760-763.
[127]
Hsu, P. C.; Liu, C.; Song, A. Y.; Zhang, Z.; Peng, Y. C.; Xie, J.; Liu, K.; Wu, C. L.; Catrysse, P. B.; Cai, L. L. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895.
[128]
Heo, S. Y.; Lee, G. J.; Kim, D. H.; Kim, Y. J.; Ishii, S.; Kim, M. S.; Seok, T. J.; Lee, B. J.; Lee, H.; Song, Y. M. A Janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906.
[129]
Lee, G. J.; Kim, Y. J.; Kim, H. M.; Yoo, Y. J.; Song, Y. M. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 2018, 6, 1800707.
[130]
Kang, M. H.; Lee, G. J.; Lee, J. H.; Kim, M. S.; Yan, J.; Jeong, J. W.; Jang, K.; Song, Y. M. Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv. Sci., 2021.
[131]
Zhou, Y. P.; Liu, Y. N.; Li, Y.; Jiang, R. M.; Li, W. X.; Zhao, W. C.; Mao, R.; Deng, L. J.; Zhou, P. H. Flexible radiative cooling material based on amorphous alumina nanotubes. Opt. Mater. Express 2020, 10, 1641-1648.
[132]
Mandal, J.; Fu, Y. K.; Overvig, A. C.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315-319.
[133]
Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086-1101.
[134]
Hu, F. J.; Lucyszyn, S. Ultra-low cost ubiquitous THZ security systems. In Asia-Pacific Microwave Conference 2011, Melbourne, Australia, 2011, pp 60-62.
[135]
Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.
[136]
Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97-105.
[137]
Ferguson, B.; Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26-33.
[138]
Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495-497.
[139]
Wang, C. Y.; Herr, T.; Del’Haye, P.; Schliesser, A.; Hofer, J.; Holzwarth, R.; Hänsch, T. W.; Picqué, N.; Kippenberg, T. J. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 2013, 4, 1345.
[140]
Jin, T. N.; Lin, H. Y. G.; Tiwald, T.; Lin, P. T. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection. Sci. Rep. 2019, 9, 4153.
[141]
Aksu, S.; Huang, M.; Artar, A.; Yanik, A. A.; Selvarasah, S.; Dokmeci, M. R.; Altug, H. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 2011, 23, 4422-4430.
[142]
Shen, X. P.; Cui, T. J.; Martin-Cano, D.; Garcia-Vidal, F. J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 2013, 110, 40-45.
[143]
Lin, P. T.; Jung, H.; Kimerling, L. C.; Agarwal, A.; Tang, H. X. Low-loss aluminium nitride thin film for mid-infrared microphotonics. Laser Photonics Rev. 2014, 8, L23-L28.
[144]
Limaj, O.; Etezadi, D.; Wittenberg, N. J.; Rodrigo, D.; Yoo, D.; Oh, S. H.; Altug, H. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 2016, 16, 1502-1508.
[145]
Chang, C. Y.; Lin, H. T.; Lai, M. S.; Shieh, T. Y.; Peng, C. C.; Shih, M. H.; Tung, Y. C. Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate. Sci. Rep. 2018, 8, 11812.
[146]
Kim, S. S.; Young, C.; Mizaikoff, B. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 2008, 390, 231-237.
[147]
Salemizadeh, M.; Mahani, F. F.; Mokhtari, A. Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications. J. Opt. Soc. Am. B 2019, 36, 2863-2870.
[148]
Rowe, D. J.; Smith, D.; Wilkinson, J. S. Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Sci. Rep. 2017, 7, 7356.
[149]
Asgari, S.; Kashani, Z. G.; Granpayeh, N. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators. J. Opt. 2018, 20, 045001.
[150]
Xu, K. C.; Wang, Z. Y.; Tan, C. F.; Kang, N.; Chen, L. W.; Ren, L.; Thian, E. S.; Ho, G. W.; Ji, R.; Hong, M. H. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 26341-26349.
[151]
Yang, X. X.; Zhai, F.; Hu, H.; Hu, D. B.; Liu, R. N.; Zhang, S. P.; Sun, M. T.; Sun, Z. P.; Chen, J. N.; Dai, Q. Far-field spectroscopy and near-field optical imaging of coupled Plasmon-phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 2016, 28, 2931-2938.
[152]
Hu, H.; Guo, X. D.; Hu, D. B.; Sun, Z. P.; Yang, X. X.; Dai, Q. Flexible and electrically tunable plasmons in graphene-mica heterostructures. Adv. Sci. 2018, 5, 1800175.
[153]
Hänsel, K.; Wilde, N.; Haddadi, H.; Alomainy, A. Challenges with current wearable technology in monitoring health data and providing positive behavioural support. In Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, Brussels, Belgium, 2015, pp 158-161.
[154]
Herder, C.; Yu, M. D.; Koushanfar, F.; Devadas, S. Physical unclonable functions and applications: A tutorial. Proc. IEEE 2014, 102, 1126-1141.
[155]
Committee on Armed Services, United States Senate. Inquiry into Counterfeit Electronic Parts in the Department of Defense Supply Chain; U.S. Government Printing Office: Washington, DC, USA, 2012; 112-167.
[156]
U.S. Department of Commerce. Defense Industrial Base Assessment: Counterfeit Electronics; Bureau of Industry and Security, Office of Technology Evaluation: Washington, DC, USA, 2010.
[157]
Li, H.; Wu, J. The war in the wearable device market: The analysis from economic perspective. In Pacific Asia Conference on Information Systems, Chengdu, China, Atlanta, 2014, pp 147.
[158]
Gao, Y. S.; Ranasinghe, D. C.; Al-Sarawi, S. F.; Kavehei, O.; Abbott, D. Emerging physical unclonable functions with nanotechnology. IEEE Access 2016, 4, 61-80.
[159]
O’brien, J.; Lehtonen, K. Counterfeit mobile devices-the duck test. In Proceedings of 2015 10th International Conference on Malicious and Unwanted Software, Fajardo, USA, 2015, pp 144-151.
[160]
Leem, J. W.; Kim, M. S.; Choi, S. H.; Kim, S. R.; Kim, S. W.; Song, Y. M.; Young, R. J.; Kim, Y. L. Edible unclonable functions. Nat. Commun. 2020, 11, 328.
[161]
Pecht, M.; Tiku, S. Bogus: Electronic manufacturing and consumers confront a rising tide of counterfeit electronics. IEEE Spectr. 2006, 43, 37-46.
[162]
Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.
[163]
Won, P.; Kim, K. K.; Kim, H.; Park, J. J.; Ha, I.; Shin, J.; Jung, J.; Cho, H.; Kwon, J.; Lee, H. et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater., in press, .
[164]
Qu, Y. R.; Li, Q.; Cai, L.; Pan, M. Y.; Ghosh, P.; Du, K. K.; Qiu, M. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 2018, 7, 26.
[165]
Peng, L.; Liu, D. Q.; Cheng, H. F.; Zhou, S.; Zu, M. A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 2018, 6, 1801006.
[166]
Danaeifar, M.; Granpayeh, N. Wideband invisibility by using inhomogeneous metasurfaces of graphene nanodisks in the infrared regime. J. Opt. Soc. Am. B 2016, 33, 1764-1768.
[167]
Zhang, C. L.; Wu, X. Y.; Huang, C.; Peng, J. Q.; Ji, C.; Yang, J. N.; Huang, Y. J.; Guo, Y. H.; Luo, X. G. Flexible and transparent microwave-infrared bistealth structure. Adv. Mater. Technol. 2019, 4, 1900063.
[168]
Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science 2012, 337, 828-832.
[169]
Li, P. N.; Yang, X. S.; Maß, T. W. W.; Hanss, J.; Lewin, M.; Michel, A. K. U.; Wuttig, M.; Taubner, T. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 2016, 15, 870-875.
[170]
Collier, R. Optical Holography; Elsevier: Amsterdam, 2013.
[171]
Picart, P. New Techniques in Digital Holography; John Wiley & Sons: London, 2015.
[172]
Bianco, V.; Paturzo, M.; Finizio, A.; Ferraro, P. Off-axis self-reference digital holography in the visible and far-infrared region. ETRI J. 2019, 41, 84-92.
[173]
Vandenrijt, J. F.; Thizy, C.; Martin, L.; Beaumont, F.; Garcia, J.; Fabron, C.; Prieto, É.; Maciaszek, T.; Georges, M. P. Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test. Opt. Eng. 2016, 55, 121723.
[174]
Georges, M. P.; Thizy, C.; Languy, F.; Vandenrijt, J. F. An overview of interferometric metrology and ndt techniques and applications for the aerospace industry. In Proceedings of SPIE 9960 Interferometry XVIII, San Diego, USA, 2016, pp 996007.
[175]
Vandenrijt, J. F.; Thizy, C.; Georges, M. P.; Queeckers, P.; Dubois, F.; Doyle, D. Long-wave infrared digital holography for the qualification of large space reflectors. In Proceedings of SPIE 10564, International Conference on Space Optics—ICSO 2012, Ajaccio, France, 2017, p 1056403.
[176]
Georges, M.; Vandenrijt, J. F.; Thizy, C.; Dubois, F.; Queeckers, P.; Doyle, D.; Pedrini, G.; Alexeenko, I.; Osten, W. Digital holographic interferometry and ESPI at long infrared wavelengths with CO2 lasers. In Digital Holography and Three-Dimensional Imaging, Miami, USA, 2012, pp DW4C.1.
[177]
Stoykova, E.; Yaraş, F.; Kang, H.; Onural, L.; Geltrude, A.; Locatelli, M.; Paturzo, M.; Pelagotti, A.; Meucci, R.; Ferraro, P. Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination. Opt. Lett. 2012, 37, 3120-3122.
[178]
Paturzo, M.; Pelagotti, A.; Geltrude, A.; Locatelli, M.; Poggi, P.; Meucci, R.; Ferraro, P.; Stoykova, E.; Yaraş, F.; Yontem, A. Ö. et al. Infrared digital holography applications for virtual museums and diagnostics of cultural heritage. In Proceedings of SPIE 8084, O3A: Optics for Arts, Architecture, and Archaeology III, Munich, Germany, 2011, p 80840K.
[179]
Locatelli, M.; Pugliese, E.; Paturzo, M.; Bianco, V.; Finizio, A.; Pelagotti, A.; Poggi, P.; Miccio, L.; Meucci, R.; Ferraro, P. Imaging live humans through smoke and flames using far-infrared digital holography. Opt. Express 2013, 21, 5379-5390.
[180]
Sun, J. Y.; Hu, F. J.; Lucyszyn, S. Predicting atmospheric attenuation under pristine conditions between 0.1 and 100 THz. IEEE Access 2016, 4, 9377-9399.
[181]
Larouche, S.; Tsai, Y. J.; Tyler, T.; Jokerst, N. M.; Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 2012, 11, 450-454.
[182]
Yakhkind, A. K. Optical graded-index elements made from glass. J. Opt. Technol. 2003, 70, 877-881.
[183]
Jin, Y.; Tai, H.; Hiltner, A.; Baer, E.; Shirk, J. S. New class of bioinspired lenses with a gradient refractive index. J. Appl. Polym. Sci. 2007, 103, 1834-1841.
[184]
Freese, W.; Kämpfe, T.; Kley, E. B.; Tünnermann, A. Design of binary subwavelength multiphase level computer generated holograms. Opt. Lett. 2010, 35, 676-678.
[185]
Liu, X. L.; Starr, T.; Starr, A. F.; Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 2010, 104, 207403.
[186]
Zhang, S.; Fan, W. J.; Panoiu, N. C.; Malloy, K. J.; Osgood, R. M.; Brueck, S. R. J. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 2005, 95, 137404.
[187]
Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41-48.
[188]
Huang, L. L.; Zhang, S.; Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics 2018, 7, 1169-1190.
Nano Research
Pages 2904-2918
Cite this article:
Yoo YJ, Heo S-Y, Kim YJ, et al. Functional photonic structures for external interaction with flexible/wearable devices. Nano Research, 2021, 14(9): 2904-2918. https://doi.org/10.1007/s12274-021-3388-x
Topics:
Part of a topical collection:

1552

Views

13

Crossref

9

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 01 December 2020
Revised: 15 January 2021
Accepted: 05 February 2021
Published: 06 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return