Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Highly stretchable, soft and sticky PDMS elastomer by solvothermal polymerization process

Jin HuangYuchun CaiChengyuan XueJin GeHaoyu ZhaoShu-Hong Yu ()
Division of Nanomaterials & Chemistry,Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China,Hefei,230026,China;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Siloxane rubber shows attractive properties of high stability, elasticity and transparency. Besides, the regulation of its properties renders it widely used in many application fields. However, most of the reported performance improvement methods of siloxane rubber focus on the change of chemical composition of siloxane rubber, including the design of molecular chain and the introduction of other compounds, etc. Such a strategy is still faced with many limitations in practical application. In this work, on the premise of not changing the chemical composition of siloxane rubber, we propose a facile solvothermal polymerization process to change the structure of cross-linking networks, so as to obtain the siloxane rubber with controllable mechanical properties. Compared to the normal curing method, we realized polydimethylsiloxane elastomer (PDMS) with maximum elongation of more than 3, 000% (> 10 times of normally cured one) and tensile modulus lower than 0.15 MPa (< 1/10 of normally cured one). In addition to superior stretchability, it gains extra high softness, stickiness and sensitive response to organic solvents. Based on our solvothermal cured PDMS, its applications in oil collection and organic solvent sensor have been demonstrated. It is expected that this method can be readily utilized widely and shows great application potentials.

Electronic Supplementary Material

Video
12274_2021_3390_MOESM1_ESM.avi
12274_2021_3390_MOESM2_ESM.avi
12274_2021_3390_MOESM3_ESM.avi
Download File(s)
12274_2021_3390_MOESM4_ESM.pdf (1.6 MB)

References

1

Mazurek, P.; Vudayagiri, S.; Skov, A. L. How to tailor flexible silicone elastomers with mechanical integrity: A tutorial review. Chem. Soc. Rev. 2019, 48, 1448-1464.

2

Trappmann, B.; Gautrot, J. E.; Connelly, J. T.; Strange, D. G. T.; Li, Y.; Oyen, M. L.; Stuart, M. A. C.; Boehm, H.; Li, B. J.; Vogel, V. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 2012, 11, 642-649.

3
Mojsiewicz-Pieńkowska, K. Review of current pharmaceutical applications of polysiloxanes (Silicones). In Handbook of Polymers for Pharmaceutical Technologies: Processing and Applications; Thakur, V. K.; Thakur, M. K., Eds.; John Wiley & Sons, Inc. : Hoboken, 2015; Vol. 2, pp 363-381.https://doi.org/10.1002/9781119041412.ch13
4

Cao, C. Y.; Ge, M. Z.; Huang, J. Y.; Li, S. H.; Deng, S.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation. J. Mater. Chem. A 2016, 4, 12179-12187.

5

Gao, X.; Zhou, J. Y.; Du, R.; Xie, Z. Q.; Deng, S. B.; Liu, R.; Liu, Z. F.; Zhang, J. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation. Adv. Mater. 2016, 28, 168-173.

6

Huang, G.; Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew. Chem., Int. Ed. 2016, 55, 7379-7383.

7

Wang, L.; Gong, Q. H.; Zhan, S. H.; Jiang, L.; Zheng, Y. M. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 2016, 28, 7729-7735.

8

Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire- elastomer nanocomposite. ACS Nano 2014, 8, 5154-5163.

9

Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 2017, 27, 1606066.

10

Tian, K.; Bae, J.; Bakarich, S. E.; Yang, C. H.; Gately, R. D.; Spinks, G. M.; Panhuis, M. I. H.; Suo, Z. G.; Vlassak, J. J. 3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv. Mater. 2017, 29, 1604827.

11

Wang, Q.; Jian, M. Q.; Wang, C. Y.; Zhang, Y. Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017, 27, 1605657.

12

McDonald, J. C.; Whitesides, G. M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35, 491-499.

13

Wang, R.; Sing, M. K.; Avery, R. K.; Souza, B. S.; Kim, M.; Olsen, B. D. Classical challenges in the physical chemistry of polymer networks and the design of new materials. Acc. Chem. Res. 2016, 49, 2786-2795.

14

Wolf, M. P.; Salieb-Beugelaar, G. B.; Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97-134.

15

Xia, D. Y.; Wang, P.; Ji, X. F.; Khashab, N. M.; Sessler, J. L.; Huang, F. H. Functional supramolecular polymeric networks: The marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 2020, 120, 6070-6123.

16

Park, S.; Mondal, K.; Treadway, R. M., Ⅲ; Kumar, V.; Ma, S. Y.; Holbery, J. D.; Dickey, M. D. Silicones for stretchable and durable soft devices: Beyond sylgard-184. ACS Appl. Mater. Interfaces 2018, 10, 11261-11268.

17

Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L. H.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618-624.

18

Jeong, S. H.; Zhang, S.; Hjort, K.; Hilborn, J.; Wu, Z. G. PDMS- based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater. 2016, 28, 5830-5836.

19

Goff, J.; Sulaiman, S.; Arkles, B.; Lewicki, J. P. Soft materials with recoverable shape factors from extreme distortion states. Adv. Mater. 2016, 28, 2393-2398.

20

Sliozberg, Y. R.; Hoy, R. S.; Mrozek, R. A.; Lenhart, J. L.; Andzelm, J. W. Role of entanglements and bond scission in high strain-rate deformation of polymer gels. Polymer 2014, 55, 2543-2551.

21

Germain, J.; Fréchet, J. M. J.; Svec, F. Hypercrosslinked polyanilines with nanoporous structure and high surface area: Potential adsorbents for hydrogen storage. J. Mater. Chem. 2007, 17, 4989-4997.

22

Mrozek, R. A.; Cole, P. J.; Otim, K. J.; Shull, K. R.; Lenhart, J. L. Influence of solvent size on the mechanical properties and rheology of polydimethylsiloxane-based polymeric gels. Polymer 2011, 52, 3422-3430.

23

Urayama, K.; Kohjiya, S. Crossover of the concentration dependence of swelling and elastic properties for polysiloxane networks crosslinked in solution. J. Chem. Phys. 1996, 104, 3352-3359.

24

Villar, M. A.; Bibbó, M. A.; Vallés, E. M. Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 1. Analysis of the molecular structure of the network. Macromolecules 1996, 29, 4072-4080.

Nano Research
Pages 3636-3642
Cite this article:
Huang J, Cai Y, Xue C, et al. Highly stretchable, soft and sticky PDMS elastomer by solvothermal polymerization process. Nano Research, 2021, 14(10): 3636-3642. https://doi.org/10.1007/s12274-021-3390-3
Topics:
Metrics & Citations  
Article History
Copyright
Return