Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In order to well arrange active sites and avoid byproducts, the reasonable structured carrier nanocatalyst plays a crucial role in high catalytic performance, but still remains a challenge. Herein, the layered CuNi-Cu2O/NiAlOx nanosheets have been constructed through hydrothermal synthesis followed by calcination and H2 reduction treatment process. The in-situ formed CuNi nanoalloys (NAs) and nano-Cu2O were evenly distributed on the bilateral surface of layered NiAlOx nanosheets. Based on the planar structure of nanosheet, the synergy between catalytic active CuNi NAs and photocatalytic active nano-Cu2O endows CuNi-Cu2O/NiAlOx nanosheets with rapid conversion efficiency for catalyzing p-nitrophenol (p-NP, 14 mg·L-1) to p-aminophenol (p-AP) in 32 s with the reaction rate constant k up to 0.1779 s-1, and no obvious performance decay can be observed even over 27 cycles. Moreover, high concentration of p-NP at 10 and 20 g·L-1 could be reduced to p-AP within 14 and 20 min, respectively. Such designed nanoalloy/bimetal-oxide heterostructure can provide a solution for rapid conversion of aminoaromatics from nitroaromatics wastewater even at a large concentration range.
Layek, K.; Kantam, M. L.; Shirai, M.; Nishio-Hamane, D.; Sasaki, T.; Maheswaran, H. Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 2012, 14, 3164–3174.
Strachan, J.; Barnett, C.; Masters, A. F.; Maschmeyer, T. 4-nitrophenol reduction: Probing the putative mechanism of the model reaction. ACS Catal. 2020, 10, 5516–5521.
Chang, Q.; Xu, W.; Li, N.; Xue, C. R.; Wang, Y. Z.; Li, Y.; Wang, H. Q.; Yang, J. L.; Hu, S. L. Dynamic restructuring of carbon dots/copper oxide supported on mesoporous hydroxyapatite brings exceptional catalytic activity in the reduction of 4-nitrophenol. Appl. Catal. B: Environ. 2020, 263, 118299.
Wu, X. Q.; Zhao, J.; Wu, Y. P.; Dong, W. W.; Li, D. S.; Li, J. R.; Zhang, Q. C. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal-organic framework for efficient methanol oxidation and nitrophenol reduction. ACS Appl. Mater. Inter. 2018, 10, 12740–12749.
Gao, S.; Zhang, Z. Y.; Liu, K. C.; Dong, B. Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl. Catal. B: Environ. 2016, 188, 245–252.
Méndez, D.; Vargas, R.; Borrás, C.; Blanco, S.; Mostany, J.; Scharifker, B. R. A rotating disk study of the photocatalytic oxidation of p-nitrophenol on phosphorus-modified TiO2 photocatalyst. Appl. Catal. B: Environ. 2015, 166, 529–534.
Zhang, J. M.; Chen, G. Z.; Guay, D.; Chaker, M.; Ma, D. L. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125–2130.
Shukla, A.; Singha, R. K.; Sasaki, T.; Bal, R. Nanocrystalline Pt-CeO2 as an efficient catalyst for a room temperature selective reduction of nitroarenes. Green Chem. 2015, 17, 785–790.
Huang, R. L.; Zhu, H. X.; Su, R. X.; Qi, W.; He, Z. M. Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol. Environ. Sci. Technol. 2016, 50, 11263–11273.
Yang, J.; Pignatello, J. J.; Pan, B.; Xing, B. S. Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char. Environ. Sci. Technol. 2017, 51, 8972–8980.
Liu, R.; Zhao, H. C.; Zhao, X. Y.; He, Z. L.; Lai, Y. J.; Shan, W. Y.; Bekana, D.; Li, G.; Liu, J. F. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by Hads*. Environ. Sci. Technol. 2018, 52, 9992–10002.
Yetim, N. K.; Aslan, N.; Koç, M. M. Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: p-Nitrophenol case. J. Environ. Chem. Eng. 2020, 8, 104258.
Huo, X. C.; Liu, J. Y.; Strathmann, T. J. Ruthenium catalysts for the reduction of N-nitrosamine water contaminants. Environ. Sci. Technol. 2018, 52, 4235–4243.
Wang, K.; Lin, H. F.; Ni, B.; Li, H. Y.; Sial, M. A. Z. G.; Yang, H. Z.; Zhuang, J.; Wang, X. Three-dimensional macroscale assembly of Pd nanoclusters. Nano Res. 2018, 11, 3175–3181.
Zan, G. T.; Wu, T.; Hu, P.; Zhou, Y. H.; Zhao, S. L.; Xu, S. M.; Chen, J.; Cui, Y.; Wu, Q. S. An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Mater. 2020, 28, 82–90.
Tian, Y. K.; Zhang, Y. X.; Huang, A. J.; Wen, M.; Wu, Q. S.; Zhao, L.; Wang, M. K.; Shen, Y.; Wang, Z. G.; Fu, Y. Q. Nanostructured Ni2SeS on porous-carbon skeletons as highly efficient electrocatalyst for hydrogen evolution in acidic medium. Inorg. Chem. 2020, 59, 6018–6025.
Xu, J.; Gai, S. L.; He, F.; Niu, N.; Gao, P.; Chen, Y. J.; Yang, P. P. Reduced graphene oxide/Ni(1–x)Co(x)Al-layered double hydroxide composites: Preparation and high supercapacitor performance. Dalton Trans. 2014, 43, 11667–11675.
Sun, Y.; Yang, Z. X.; Tian, P. F.; Sheng, Y. Y.; Xu, J.; Han, Y. F. Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Appl. Catal. B: Environ. 2019, 244, 1–10.
Xu, Y. L.; Shi, X. F.; Hua, R.; Zhang, R.; Yao, Y. J.; Zhao, B.; Liu, T.; Zheng, J. Z.; Lu, G. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl. Catal. B: Environ. 2020, 260, 118142.
Wu, K. L.; Wei, X. W.; Zhou, X. M.; Wu, D. H.; Liu, X. W.; Ye, Y.; Wang, Q. NiCo2 alloys: Controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol. J. Phys. Chem. 2011, 115, 16268–16274.
Gao, L.; Li, R.; Sui, X. L.; Li, R.; Chen, C. L.; Chen, Q. W. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol. 2014, 48, 10191–10197.
Wu, D. D.; Zhang, Y. Q.; Wen, M.; Fang, H.; Wu, Q. S. Fe3O4/FeNi embedded nanostructure and its kinetic law for selective catalytic reduction of p-nitrophenyl compounds. Inorg. Chem. 2017, 56, 5152–5157.
Liu, L. B.; Qin, S.; Wang, J. J.; Zheng, W. J.; Du, X. W. Photothermal synthesis of ultrafine CuxO nanoparticles on carbon nanotubes for photosensitized degradation. Chem. Commun. 2015, 51, 5660–5663.
Gu, C.; Wu, D. D.; Wen, M.; Wu, Q. S. A freestanding SiO2 ultrathin membrane with NiCu nanoparticles embedded on its double surfaces for catalyzing nitro-amination. Dalton Trans. 2018, 47, 7083–7089.
Wu, Y. H.; Song, M. T.; Wang, Q. J.; Wang, T.; Wang, X. J. A highly selective conversion of toxic nitrobenzene to nontoxic aminobenzene by Cu2O/Bi/Bi2MoO6. Dalton Trans. 2018, 47, 8794–8800.
Yang, L. X.; Luo, S. L.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q. Y. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ. Sci. Technol. 2010, 44, 7641–7646.
Fang, H.; Chen, Y. T.; Wen, M.; Wu, Q. S.; Zhu, Q. J. SnNi nanoneedles assembled 3D radial nanostructure loaded with SnNiPt nanoparticles: Towards enhanced electrocatalysis performance for methanol oxidation. Nano Res. 2017, 10, 3929–3940.
Zhao, W. Y.; Huang, D. B.; Yuan, Q.; Wang, X. Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks. Nano Res. 2016, 9, 3066–3074.
Fang, H.; Wen, M.; Chen, H. X.; Wu, Q. S.; Li, W. Y. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro- compounds. Nanoscale 2016, 8, 536–542.
Qian, J. J.; Yuan, A. L.; Yao, C. K.; Liu, J. Y.; Li, B. X.; Xi, F. N.; Dong, X. P. Highly efficient photo-reduction of p-nitrophenol by protonated graphitic carbon nitride nanosheets. ChemCatChem 2018, 10, 4747–4754.
Bi, X.; Fan, T.; Zhang, H. Novel morphology-controlled hierarchical core@shell structural organo-layered double hydroxides magnetic nanovehicles for drug release. ACS Appl. Mater. Inter. 2014, 6, 20498–20509.
Wang, Q.; Wu, X. Q.; Zhang, L. Designed of bifunctional Z-scheme CuSnO3@Cu2O heterojunctions film for photoelectrochemical catalytic reduction and ultrasensitive sensing nitrobenzene. Chem. Eng. J. 2019, 361, 398–407.
Ge, Y. Z.; Gao, T. Y.; Wang, C.; Shah, Z. H.; Lu, R. W.; Zhang, S. F. Highly efficient silica coated CuNi bimetallic nanocatalyst from reverse microemulsion. J. Colloid Interf. Sci. 2017, 491, 123–132.
Sasmal, A. K.; Pal, J.; Sahoo, R.; Kartikeya, P.; Dutta, S.; Pal, T. Superb dye adsorption and dye-sensitized change in Cu2O–Ag crystal faces in the dark. J. Phys. Chem. C 2016, 120, 21580–21588. [34] Paun, C.; Giziński, D.; Zienkiewicz-Machnik, M.; Banaś, D.; Kubala- Kukuś, A.; Sá, J. p-Nitrophenol flow hydrogenation with nano-Cu2O grafted on polymeric resin. Catal. Commun. 2017, 92, 61–64.
Li, Y. G.; Quan, X. J.; Hu, C. Y.; Li, C. P. Effective catalytic reduction of 4-nitrophenol to 4-aminophenol over etched halloysite nanotubes@α-Ni(OH)2. ACS Appl. Energ. Mater. 2020, 3, 4756–4766.
Sun, S. T.; Zhang, Z. H.; Wu, P. Y. Exploring graphene nanocolloids as potential substrates for the enhancement of Raman scattering. ACS Appl. Mater. Inter. 2013, 5, 5085–5090.
Yang, T.; Zou, H. Y.; Huang, C. Z. Synergetic catalytic effect of Cu2–xSe nanoparticles and reduced graphene oxide coembedded in electrospun nanofibers for the reduction of a typical refractory organic compound. ACS Appl. Mater. Inter. 2015, 7, 15447–15457.
Madasu, M.; Hsia, C. F.; Rej, S.; Huang, M. H. Cu2O pseudomorphic conversion to Cu crystals for diverse nitroarene reduction. ACS Sustain. Chem. Eng. 2018, 6, 11071–11077.
Kapoor, S.; Sheoran, A.; Riyaz, M.; Agarwal, J.; Goel, N.; Singhal, S. Enhanced catalytic performance of Cu/Cu2O nanoparticles via introduction of graphene as support for reduction of nitrophenols and ring opening of epoxides with amines established by experimental and theoretical investigations. J. Catal. 2020, 381, 329–346.
Li, B.; Ma, J. G.; Cheng, P. Silica-protection-assisted encapsulation of Cu2O nanocubes into a metal-organic framework (ZIF-8) to provide a composite catalyst. Angew. Chem., Int. Ed. 2018, 57, 6834–6837.
Figueiredo, W. T.; Della Mea, G. B.; Segala, M.; Baptista, D. L.; Escudero, C.; Pérez-Dieste, V.; Bernardi, F. Understanding the strong metal–support interaction (SMSI) effect in CuxNi1–x/CeO2 (0 < x < 1) nanoparticles for enhanced catalysis. ACS Appl. Nano Mater. 2019, 2, 2559–2573.
Catherin Sesu, D.; Patil, I.; Lokanathan, M.; Parse, H.; Marbaniang, P.; Kakade, B. Low density three-dimensional metal foams as significant electrocatalysts toward methanol oxidation reaction. ACS Sustain. Chem. Eng. 2018, 6, 2062–2068.
Wei, Z. J.; Li, Y. G.; Dou, L. G.; Ahmad, M.; Zhang, H. Cu3–xNixAl- layered double hydroxide-reduced graphene oxide nanosheet array for the reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2019, 2, 2383–2396.
Chen, L. C.; Cheng, H. K.; Chiang, C. W.; Lin, S. D. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst. ChemSusChem 2015, 8, 1787–1793.
Wang, Z. Y.; Su, R.; Wang, D.; Shi, J.; Wang, J. X.; Pu, Y.; Chen, J. F. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol. Ind. Eng. Chem. Res. 2017, 56, 13610–13617.
Hou, J. G.; Sun, Y. Q.; Li, Z. W.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2018, 28, 1803278.
Wu, W.; Lei, M.; Yang, S. L.; Zhou, L.; Liu, L.; Xiao, X. H.; Jiang, C. Z.; Roy, V. A. L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 3450–3455.
Jiang, Z. F.; Xie, J. M.; Jiang, D. L.; Wei, X. J.; Chen, M. Modifiers- assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm 2013, 15, 560–569.
Lin, C. Y.; Lai, Y. H.; Mersch, D.; Reisner, E. Cu2O| NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 2012, 3, 3482–3487.
Wei, Y. J.; Chang, X. X.; Wang, T.; Li, C. C.; Gong, J. L. A low-cost NiO hole transfer layer for ohmic back contact to Cu2O for photoelectrochemical water splitting. Small 2017, 13, 1702007.
Wei, Z.; Li, Y.; Dou, L.; Ahmad, M.; Zhang, H. Cu3–xNixAl-layered double hydroxide-reduced graphene oxide nanosheet array for the reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2019, 2, 2383-2396.
Huang, C.; Ye, W.; Liu, Q.; Qiu, X. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction. ACS Appl. Mater. Interfaces 2014, 6, 14469-14476.
Yang, T.; Zou, H. Y.; Huang, C. Z. Synergetic catalytic effect of Cu2–xSe nanoparticles and reduced graphene oxide coembedded in electrospun nanofibers for the reduction of a typical refractory organic compound. ACS Appl. Mater. Interfaces 2015, 7, 15447-15457.
Sahu, K.; Satpati, B.; Singhal, R.; Mohapatra, S. Enhanced catalytic activity of CuO/Cu2O hybrid nanowires for reduction of 4-nitrophenol in water. J. Phys. Chem. Solids 2020, 136, 109143.
Konar, S.; Kalita, H.; Puvvada, N.; Tantubay, S.; Mahto, M. K.; Biswas, S.; Pathak, A. Shape-dependent catalytic activity of CuO nanostructures. J. Catal. 2016, 336, 11-22.
Chu, C.; Rao, S.; Ma, Z.; Han, H. Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol. Appl. Catal. B-Environ. 2019, 256, 117792.
Wu, W.; Lei, M.; Yang, S.; Zhou, L.; Liu, L.; Xiao, X.; Jiang, C.; Roy, V. A. L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 3450-3455.
Paul, A.; Dhar, S. S. Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol. J. Solid State Chem. 2020, 290, 121563.
Jiang, Z.; Xie, J.; Jiang, D.; Wei, X.; Chen, M. Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. Crystengcomm 2013, 15, 560-569.
Tian, Y.; Liu, Y.; Pang, F.; Wang, F.; Zhang, X. Green synthesis of nanostructed Ni-reduced graphene oxide hybrids and their application for catalytic reduction of 4-nitrophenol. Colloid Surf. A-Physicochem. Eng. Asp. 2015, 464, 96-103.
Zeynizadeh, B.; Karami, S. Synthesis of Ni nanoparticles anchored on cellulose using different reducing agents and their applications towards reduction of 4-nitrophenol. Polyhedron 2019, 166, 196-202.
Das, R.; Sypu, V. S.; Paumo, H. K.; Bhaumik, M.; Maharaj, V.; Maity, A. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B-Environ. 2019, 244, 546-558.
Xu, Y.; Shi, X.; Hua, R.; Zhang, R.; Yao, Y.; Zhao, B.; Liu, T.; Zheng, J.; Lu, G. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl. Catal. B-Environ. 2020, 260, 118142.
Wang, N.; Zeng, S.; Yuan, H.; Huang, J. Morphology-dependent interfacial interactions of Fe2O3 with Ag nanoparticles for determining the catalytic reduction of p-nitrophenol. J Environ Sci (China) 2020, 92, 1-10.
Zhang, W.; Li, G.; Wang, W.; Qin, Y.; An, T.; Xiao, X.; Choi, W. Enhanced photocatalytic mechanism of Ag3PO4 nano-sheets using MS2 (M = Mo, W)/rGO hybrids as co-catalysts for 4-nitrophenol degradation in water. Appl. Catal. B-Environ. 2018, 232, 11-18.
Wang, X.; Tan, F.; Wang, W.; Qiao, X.; Qiu, X.; Chen, J. Anchoring of silver nanoparticles on graphitic carbon nitride sheets for the synergistic catalytic reduction of 4-nitrophenol. Chemosphere 2017, 172 147-154.
Nguyen, T. B.; Huang, C. P.; Doong, R. -a. Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl. Catal. B-Environ. 2019, 240, 337-347.
Fu, Y.; Huang, T.; Jia, B.; Zhu, J.; Wang, X. Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl. Catal. B-Environ. 2017, 202, 430-437.
Li, J.; Liu, C. -y.; Liu, Y. Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426-8430.
Lin, F. -h.; Doong, R. -a. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591-6598.
Wu, X.; Lu, C.; Zhang, W.; Yuan, G.; Xiong, R.; Zhang, X. A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance. J. Mater. Chem. A 2013, 1, 8645-8652.