AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface

Lisha Yu1,§Bin Yu1,§Hao Chen1Xiaoqiang Shang1Min He2Mengchi Lin1Dan Li1Wenzhao Zhang1Zhengzhong Kang1Jiachen Li1Fangjun Wang2Liping Xiao1Qi Wang1( )Jie Fan1( )
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

§ Lisha Yu and Bin Yu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

It is challenging to develop an in vitro catalytic system to conduct natural surface-confined enzymatic reactions in a stable, efficient, and spatially defined manner. Here, we report that an artificial catalyst, which composes of trypsin and a calcium ion exchanged zeolite Y (trypsin/CaY), is capable of conducting surface-confined thrombin generation, and then constructs an artificial shortcut for classic, natural and complex blood coagulation cascade. The Ca2+ within the microporous cages play a key role in trypsin/CaY hybrid through tuning the bio-inorganic interaction and spatial orientation of the protease, which allows trypsin/CaY to display greatly enhanced catalytic performance in coagulation process. The in vivo efficiency of the artificial coagulation shortcut is further confirmed in massive bleeding and hemophilia animal models. Rapid hemostasis is achieved by trypsin/CaY hybrid in a hemophilia A mice tail bleeding model, where natural clotting system fails in response to bleeding event due to factor VIII deficiency. In a rabbit lethal femoral artery injury model, the blood loss of the artificial catalyst is decreased by 4-7 fold when compared to state-of-art clay- or zeolite-based topical agents.

Electronic Supplementary Material

Video
12274_2021_3394_MOESM1_ESM.mp4
Download File(s)
12274_2021_3394_MOESM2_ESM.pdf (3.1 MB)

References

[1]
Küchler, A.; Yoshimoto, M.; Luginbuhl, S.; Mavelli, F.; Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 2016, 11, 409-420.
[2]
Chapin, J. C.; Hajjar, K. A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17-24.
[3]
Vogler, E. A.; Siedlecki, C. A. Contact activation of blood-plasma coagulation. Biomaterials 2009, 30, 1857-1869.
[4]
Hanefeld, U.; Gardossi, L.; Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 2009, 38, 453-468.
[5]
Sheldon, R. A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223-6235.
[6]
Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 2012, 134, 5516-5519.
[7]
Tabaei, S. R.; Rabe, M.; Zetterberg, H.; Zhdanov, V. P.; Höök, F. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid. J. Am. Chem. Soc. 2013, 135, 14151-14158.
[8]
Johnson, B. J.; Algar, W. R.; Malanoski, A. P.; Ancona, M. G.; Medintz, I. L. Understanding enzymatic acceleration at nanoparticle interfaces: Approaches and challenges. Nano Today 2014, 9, 102-131.
[9]
Dahlbäck, B. Blood coagulation. Lancet 2000, 355, 1627-1632.
[10]
Versteeg, H. H.; Heemskerk, J. W. M.; Levi, M.; Reitsma, P. H. New fundamentals in hemostasis. Physiol. Rev. 2013, 93, 327-358.
[11]
Krishnaswamy, S. The transition of prothrombin to thrombin. J. Thromb. Haemost. 2013, 11, 265-276.
[12]
Monroe, D. M.; Hoffman, M.; Roberts, H. R. Platelets and thrombin generation. Arterioscler., Thromb., Vasc. Biol. 2002, 22, 1381-1389.
[13]
Young, G.; Sørensen, B.; Dargaud, Y.; Negrier, C.; Brummel-Ziedins, K.; Key, N. S. Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: Current state of art and future perspectives. Blood 2013, 121, 1944-1950.
[14]
Blajchman, M. A. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J. Thromb. Haemost. 2003, 1, 1637-1641.
[15]
Shin, M.; Park, S.; Oh, B. C.; Kim, K.; Jo, S.; Lee, M. S.; Oh, S. S.; Hong, S. H.; Shin, E. C.; Kim, K. S. et al. Complete prevention of blood loss with self-sealing haemostatic needles. Nat. Mater. 2017, 16, 147-152.
[16]
Hoffman, M. Remodeling the blood coagulation cascade. J. Thromb. Thrombolysis. 2003, 16, 17-20.
[17]
Hickman, D. A.; Pawlowski, C. L.; Sekhon, U. D. S.; Marks, J.; Gupta, A. S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 2018, 30, 1700859.
[18]
Eagle, H.; Harris, T. N. Studies in blood coagulation: V. The coagulation of blood by proteolytic enzymes (trypsin, papain). J. Gen. Physiol. 1937, 20, 543-560.
[19]
Ferguson, J. H.; Wilson, E. G.; Iatridis, S. G.; Rierson, H. A.; Johnston, B. R. Enzymes and blood clotting. I. Trypsin as an accessory factor. J. Clin. Invest. 1960, 39, 1942-1952.
[20]
Grunwald, P. Biocatalysis: Biochemical Fundamentals and Applications, 2nd ed.; World Scientific: New Jersey, 2017.
[21]
Achneck, H. E.; Sileshi, B.; Jamiolkowski, R. M.; Albala, D. M.; Shapiro, M. L.; Lawson, J. H. A comprehensive review of topical hemostatic agents: Efficacy and recommendations for use. Ann. Surg. 2010, 251, 217-228.
[22]
Pourshahrestani, S.; Zeimaran, E.; Djordjevic, I.; Kadri, N. A.; Towler, M. R. Inorganic hemostats: The state-of-the-art and recent advances. Mater. Sci. Eng.: C 2016, 58, 1255-1268.
[23]
Bennett, B. L.; Littlejohn, L. Review of new topical hemostatic dressings for combat casualty care. Mil. Med. 2014, 179, 497-514.
[24]
Kheirabadi, B. S.; Mace, J. E.; Terrazas, I. B.; Fedyk, C. G.; Estep, J. S.; Dubick, M. A.; Blackbourne, L. H. Safety evaluation of new hemostatic agents, smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine. J. Trauma. 2010, 68, 269-278.
[25]
Huang, R. X.; Carney, R. P.; Ikuma, K.; Stellacci, F.; Lau, B. L. T. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: Different protein configurations. ACS Nano 2014, 8, 5402-5412.
[26]
De, M.; You, C. C.; Srivastava, S.; Rotello, V. M. Biomimetic interactions of proteins with functionalized nanoparticles: A thermodynamic study. J. Am. Chem. Soc. 2007, 129, 10747-10753.
[27]
Sandros, M. G.; Gao, D.; Gokdemir, C.; Benson, D. E. General, high-affinity approach for the synthesis of fluorophore appended protein nanoparticle assemblies. Chem. Commun. 2005, 2832-2834.
[28]
Zhou, Y.; Liu, Z. Y.; Zhang, J. B.; Dou, T. Y.; Chen, J.; Ge, G. B.; Zhu, S. J.; Wang, F. J. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Chem. Commun. 2019, 55, 4311-4314.
[29]
Liu, Z. Y.; Zhou, Y.; Liu, J.; Chen, J.; Heck, A. J. R.; Wang, F. J. Reductive methylation labeling, from quantitative to structural proteomics. TrAC Trends Anal. Chem. 2019, 118, 771-778.
[30]
Zhou, Y.; Wu, Y.; Yao, M. D.; Liu, Z. Y.; Chen, J.; Chen, J.; Tian, L. R.; Han, G. Y.; Shen, J. R.; Wang, F. J. Probing the lysine proximal microenvironments within membrane protein complexes by active dimethyl labeling and mass spectrometry. Anal. Chem. 2016, 88, 12060-12065.
[31]
Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009, 4, 484-494.
[32]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S. Y. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2095-2128.
[33]
Butler, F. K. Jr.; Blackbourne, L. H. Battlefield trauma care then and now: A decade of tactical combat casualty care. J. Trauma Acute Care Surg. 2012, 73, S395-S402.
[34]
Kauvar, D. S.; Lefering, R.; Wade, C. E. Impact of hemorrhage on trauma outcome: An overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma 2006, 60, S3-S11.
[35]
Cannon, J. W. Hemorrhagic shock. N. Engl. J. Med. 2018, 378, 370-379.
[36]
Levy, J. H.; Goodnough, L. T. How I use fibrinogen replacement therapy in acquired bleeding. Blood 2015, 125, 1387-1393.
[37]
Behrens, A. M.; Sikorski, M. J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. 2014, 102, 4182-4194.
[38]
Bertram, J. P.; Williams, C. A.; Robinson, R.; Segal, S. S.; Flynn, N. T.; Lavik, E. B. Intravenous hemostat: Nanotechnology to halt bleeding. Sci. Transl. Med. 2009, 1, 11ra22.
[39]
Chan, L. W.; Wang, X.; Wei, H.; Pozzo, L. D.; White, N. J.; Pun, S. H. A synthetic fibrin cross-linking polymer for modulating clot properties and inducing hemostasis. Sci. Transl. Med. 2015, 7, 277ra29.
[40]
Gordy, S. D.; Rhee, P.; Schreiber, M. A. Military applications of novel hemostatic devices. Expert Rev. Med. Devic. 2011, 8, 41-47.
[41]
Kheirabadi, B. Evaluation of topical hemostatic agents for combat wound treatment. US Army Med. Dep. J. 2011, 25-37.
[42]
Chen, H.; Shang, X. Q.; Yu, L. S.; Xiao, L. P.; Fan, J. Safety evaluation of a low-heat producing zeolite granular hemostatic dressing in a rabbit femoral artery hemorrhage model. J. Biomater. Appl. 2020, 34, 988-997.
[43]
Yu, L. S.; Shang, X. Q.; Chen, H.; Xiao, L. P.; Zhu, Y. H.; Fan, J. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 2019, 10, 1932.
[44]
Transue, T. R.; Krahn, J. M.; Gabel, S. A.; DeRose, E. F.; London, R. E. X-ray and NMR characterization of covalent complexes of trypsin, borate, and alcohols. Biochemistry 2004, 43, 2829-2839.
[45]
Gabrieli, A.; Sant, M.; Demontis, P.; Suffritti, G. B. Development and optimization of a new force field for flexible aluminosilicates, enabling fast molecular dynamics simulations on parallel architectures. J. Phys. Chem. C. 2013, 117, 503-509.
[46]
Huang, J.; Mackerell, A. D. Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135-2145.
Nano Research
Pages 3309-3318
Cite this article:
Yu L, Yu B, Chen H, et al. Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface. Nano Research, 2021, 14(9): 3309-3318. https://doi.org/10.1007/s12274-021-3394-z
Topics:
Part of a topical collection:

910

Views

16

Crossref

15

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 29 December 2020
Revised: 07 February 2021
Accepted: 08 February 2021
Published: 18 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return