Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.
Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562–5568.
Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2018, 11, 3710–3721.
Messager, L.; Burns, J. R.; Kim, J.; Cecchin, D.; Hindley, J.; Pyne, A. L. B.; Gaitzsch, J.; Battaglia, G.; Howorka, S. Biomimetic hybrid nanocontainers with selective permeability. Angew. Chem. , Int. Ed. 2016, 55, 11106–11109.
Gaitzsch, J.; Huang, X.; Voit, B. Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 2016, 116, 1053– 1093.
Liu, Y. J.; Yang, X. Y.; Huang, Z. Q.; Huang, P.; Zhang, Y.; Deng, L.; Wang, Z. T.; Zhou, Z. J.; Liu, Y.; Kalish, H. et al. Magneto-plasmonic Janus vesicles for magnetic field-enhanced photoacoustic and magnetic resonance imaging of tumors. Angew. Chem. , Int. Ed. 2016, 55, 15297–15300.
Mabire, A. B.; Robin, M. P.; Willcock, H.; Pitto-Barry, A.; Kirby, N.; O'Reilly, R. K. Dual effect of thiol addition on fluorescent polymeric micelles: On-to-OFF emissive switch and morphology transition. Chem. Commun. 2014, 50, 11492–11495.
Yan, Q.; Yuan, J. Y.; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y. W. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 2010, 132, 9268–9270.
Deng, R. H.; Wang, Y. L.; Yang, L. S.; Bain, C. D. In situ fabrication of polymeric microcapsules by ink-jet printing of emulsions. ACS Appl. Mater. Interfaces 2019, 11, 40652–40661.
Allen, S. D.; Liu, Y. G.; Bobbala, S.; Cai, L.; Hecker, P. I.; Temel, R.; Scott, E. A. Polymersomes scalably fabricated via flash nanoprecipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration. Nano Res. 2018, 11, 5689–5703.
Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 2016, 9, 2070–2078.
Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.
Ma, L.; Eisenberg, A. Relationship between wall thickness and size in block copolymer vesicles. Langmuir 2009, 25, 13730–13736.
Li, D.; Huo, M.; Liu, L.; Zeng, M.; Chen, X.; Wang, X. S.; Yuan, J. Y. Overcoming kinetic trapping for morphology evolution during polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1900202.
Hu, Y.; Chen, Y. M.; Du, J. Z. Evolution of diverse higher-order membrane structures of block copolymer vesicles. Polym. Chem. 2019, 10, 3020–3029.
Liu, D. Q.; Cornel, E. J.; Du, J. Z. Renoprotective angiographic polymersomes. Adv. Funct. Mater. 2020, 31, 2007330.
Liu, G. H.; Wang, X. R.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 2014, 136, 7492–7497.
Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. A vesicle-to-worm transition provides a new high-temperature oil thickening mechanism. Angew. Chem. , Int. Ed. 2017, 56, 1746–1750.
Ratcliffe, L. P. D.; Derry, M. J.; Ianiro, A.; Tuinier, R.; Armes, S. P. A single thermoresponsive diblock copolymer can form spheres, worms or vesicles in aqueous solution. Angew. Chem. , Int. Ed. 2019, 131, 19140–19146.
Huo, M.; Xu, Z. Y.; Zeng, M.; Chen, P. Y.; Liu, L.; Yan, L. T.; Wei, Y.; Yuan, J. Y. Controlling vesicular size via topological engineering of amphiphilic polymer in polymerization-induced self-assembly. Macromolecules 2017, 50, 9750–9759.
Luo, L. B.; Eisenberg, A. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains. Angew. Chem. , Int. Ed. 2002, 41, 1001–1004.
Deng, R. H.; Liang, F. X.; Qu, X. Z.; Wang, Q.; Zhu, J. T.; Yang, Z. Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750–755.
Deng, R. H.; Liu, S. Q.; Li, J. Y.; Liao, Y. G.; Tao, J.; Zhu, J. T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889–1893.
Wong, C. K.; Qiang, X. L.; Müller, A. H. E.; Gröschel, A. H. Self- assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211.
Yan, N.; Zhu, Y. T.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183–13195.
Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646.
Lee, J.; Ku, K. H.; Kim, J.; Lee, Y. J.; Jang, S. G.; Kim, B. J. Light-responsive, shape-switchable block copolymer particles. J. Am. Chem. Soc. 2019, 141, 15348–15355.
Chi, P.; Wang, Z.; Li, B. H.; Shi, A. C. Soft confinement-induced morphologies of diblock copolymers. Langmuir 2011, 27, 11683– 11689.
Lv, F.; An, Z. S.; Wu, P. Y. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397.
Lv, F.; An, Z. S.; Wu, P. Y. Efficient access to inverse bicontinuous mesophases via polymerization-induced cooperative assembly. CCS Chem. 2020, 2, 2211–2222.
Higuchi, T.; Motoyoshi, K.; Sugimori, H.; Jinnai, H.; Yabu, H.; Shimomura, M. Phase transition and phase transformation in block copolymer nanoparticles. Macromol. Rapid Commun. 2010, 31, 1773–1778.
Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Frustrated phases of block copolymers in nanoparticles. Angew. Chem. , Int. Ed. 2008, 47, 8044–8046.
Varadharajan, D.; Turgut, H.; Lahann, J.; Yabu, H.; Delaittre, G. Surface-reactive patchy nanoparticles and nanodiscs prepared by tandem nanoprecipitation and internal phase separation. Adv. Funct. Mater. 2018, 28, 1800846.
Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100th anniversary of macromolecular science viewpoint: Block copolymer particles: Tuning shape, interfaces, and morphology. ACS Macro Lett. 2020, 9, 306–317.
Shi, A. C.; Li, B. H. Self-assembly of diblock copolymers under confinement. Soft Matter 2013, 9, 1398–1413.
Qiang, X. L.; Franzka, S.; Dai, X. Z.; Gröschel, A. H. Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly. Macromolecules 2020, 53, 4224–4233.
Yan, N.; Zhu, Y. T.; Jiang, W. Self-assembly of AB diblock copolymer confined in a soft nano-droplet: A combination study by Monte Carlo simulation and experiment. J. Phys. Chem. B 2016, 120, 12023– 12029.
Lee, J.; Ku, K. H.; Park, C. H.; Lee, Y. J.; Yun, H.; Kim, B. J. Shape and color switchable block copolymer particles by temperature and pH dual responses. ACS Nano 2019, 13, 4230–4237.
Li, Y. L.; Chen, X.; Geng, H. K.; Dong, Y.; Wang, B.; Ma, Z.; Pan, L.; Ma, G. Q.; Song, D. P.; Li, Y. S. Oxidation control of bottlebrush molecular conformation for producing libraries of photonic structures. Angew. Chem. , Int. Ed. 2021, 133, 3691–3697.
Li, L.; Matsunaga, K.; Zhu, J. T.; Higuchi, T.; Yabu, H.; Shimomura, M.; Jinnai, H.; Hayward, R. C.; Russell, T. P. Solvent-driven evolution of block copolymer morphology under 3D confinement. Macromolecules 2010, 43, 7807–7812.
Shin, J. M.; Lee, Y. J.; Kim, M.; Ku, K. H.; Lee, J.; Kim, Y.; Yun, H.; Liao, K.; Hawker, C. J.; Kim, B. J. Development of shape-tuned, monodisperse block copolymer particles through solvent-mediated particle restructuring. Chem. Mater. 2019, 31, 1066–1074.
Fan, H. L.; Jin, Z. X. Selective swelling of block copolymer nanoparticles: Size, nanostructure, and composition. Macromolecules 2014, 47, 2674–2681.
Mei, S. L.; Jin, Z. X. Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 2013, 9, 322–329.
Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.
Deng, R. H.; Liang, F. X.; Li, W. K.; Yang, Z. Z.; Zhu, J. T. Reversible transformation of nanostructured polymer particles. Macromolecules 2013, 46, 7012–7017.
Deng, R. H.; Li, H.; Liang, F. X.; Zhu, J. T.; Li, B. H.; Xie, X. L.; Yang, Z. Z. Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 2015, 48, 5855–5860.
Lovett, J. R.; Warren, N. J.; Ratcliffe, L. P. D.; Kocik, M. K.; Armes, S. P. pH-responsive non-ionic diblock copolymers: Ionization of carboxylic acid end-groups induces an order-order morphological transition. Angew. Chem. , Int. Ed. 2015, 54, 1279–1283.
Weisbord, I.; Shomrat, N.; Moshe, H.; Sosnik, A.; Segal-Peretz, T. Nano spray-dried block copolymer nanoparticles and their transformation into hybrid and inorganic nanoparticles. Adv. Funct. Mater. 2020, 30, 1808932.
Xu, M.; Ku, K. H.; Lee, Y. J.; Shin, J. J.; Kim, E. J.; Jang, S. G.; Yun, H.; Kim, B. J. Entropy-driven assembly of nanoparticles within emulsion-evaporative block copolymer particles: Crusted, seeded, and alternate-layered onions. Chem. Mater. 2020, 32, 7036–7043.
Yan, N.; Liu, H. X.; Zhu, Y. T.; Jiang, W.; Dong, Z. Y. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 2015, 48, 5980–5987.