Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Covalently bonded two spin centers of paramagnetic metallofullerene dimer

Haibing Meng§Yongqiang Chai§Chong ZhaoMingzhe NieChunru WangTaishan Wang()
Beijing National Laboratory for Molecular Sciences Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of SciencesZhongguancun North First Street 2, Beijing 100190 China

§Haibing Meng and Yongqiang Chai contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Paramagnetic endohedral metallofullerenes with well protected unpaired spin have potential applications in molecular-scale qubit processing and magnetoreception system. In this study, a paramagnetic metallofullerene Sc3C2@C80 dimer with covalently bonded two spin centers was synthesized. Electron paramagnetic resonance (EPR) results further revealed the varied spin-nuclei couplings and paramagnetic property for Sc3C2@C80 dimer. Briefly, the Sc3C2@C80 dimer in toluene solution shows EPR hyperfine splittings originating from the spin-Sc couplings. However, the Sc3C2@C80 dimer in solid state shows the disappearance of hyperfine structure and a single EPR signal caused by its two-spin-center structure. The transformation of EPR signals can be further finely modulated by controlling the dynamic motion of Sc3C2@C80 dimer in chloronaphthalene. The Sc3C2@C80 dimer with two spin centers possesses varied paramagnetic properties, demonstrating its potential as new magnetic material.

Electronic Supplementary Material

Download File(s)
12274_2021_3398_MOESM1_ESM.pdf (5 MB)

References

1

Atzori, M.; Chiesa, A.; Morra, E.; Chiesa, M.; Sorace, L.; Carretta, S.; Sessoli, R. A two-qubit molecular architecture for electron-mediated nuclear quantum simulation. Chem. Sci. 2018, 9, 6183–6192.

2

Boulon, M. E.; Fernandez, A.; Moreno Pineda, E.; Chilton, N. F.; Timco, G.; Fielding, A. J.; Winpenny, R. E. P. Measuring spin … spin interactions between heterospins in a hybrid [2]rotaxane. Angew. Chem. 2017, 129, 3934–3937.

3

Bader, K.; Dengler, D.; Lenz, S.; Endeward, B.; Jiang, S. D.; Neugebauer, P.; van Slageren, J. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 2014, 5, 5304.

4

Ferrando-Soria, J.; Magee, S. A.; Chiesa, A.; Carretta, S.; Santini, P.; Vitorica-Yrezabal, I. J.; Tuna, F.; Whitehead, G. F. S.; Sproules, S.; Lancaster, K. M. et al. Switchable interaction in molecular double qubits. Chem 2016, 1, 727–752.

5

Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 2002, 65, 032322.

6

Morton, J. J. L.; Tyryshkin, A. M.; Ardavan, A.; Porfyrakis, K.; Lyon, S. A.; Andrew, D. Briggs, G. Electron spin relaxation of N@C60 in CS2. J. Chem. Phys. 2006, 124, 014508.

7

Gil-Ramírez, G.; Shah, A.; El Mkami, H.; Porfyrakis, K.; Briggs, G. A. D.; Morton, J. J. L.; Anderson, H. L.; Lovett, J. E. Distance measurement of a noncovalently bound Y@C82 pair with double electron electron resonance spectroscopy. J. Am. Chem. Soc. 2018, 140, 7420–7424.

8

Zhou, S.; Yamamoto, M.; Briggs, G. A. D.; Imahori, H.; Porfyrakis, K. Probing the dipolar coupling in a heterospin endohedral fullerene- phthalocyanine dyad. J. Am. Chem. Soc. 2016, 138, 1313–1319.

9

Yang, W.; Velkos, G.; Liu, F. P.; Sudarkova, S. M.; Wang, Y. F.; Zhuang, J. X.; Zhang, H. N.; Li, X.; Zhang, X. X.; Büchner, B. et al. Single molecule magnetism with strong magnetic anisotropy and enhanced Dy…Dy coupling in three isomers of Dy-oxide clusterfullerene Dy2O@C82. Adv. Sci. 2019, 6, 1901352.

10

Liu, Z.; Dong, B. W.; Meng, H. B.; Xu, M. X.; Wang, T. S.; Wang, B. W.; Wang, C. R.; Jiang, S. D.; Gao, S. Qubit crossover in the endohedral fullerene Sc3C2@C80. Chem. Sci. 2018, 9, 457–462.

11

Morton, J. J. L.; Tyryshkin, A. M.; Ardavan, A.; Porfyrakis, K.; Lyon, S. A.; Briggs, G. A. D. Environmental effects on electron spin relaxation in N@C60. Phys. Rev. B 2007, 76, 085418.

12

Cornes, S. P.; Zhou, S.; Porfyrakis, K. Synthesis and EPR studies of the first water-soluble N@C60 derivative. Chem. Commun. 2017, 53, 12742–12745.

13

Liu, G. Q.; Khlobystov, A. N.; Charalambidis, G.; Coutsolelos, A. G.; Briggs, G. A. D.; Porfyrakis, K. N@C60-porphyrin: A dyad of two radical centers. J. Am. Chem. Soc. 2012, 134, 1938–1941.

14

Ćirić, L.; Pierzchala, K.; Sienkiewicz, A.; Magrez, A.; Náfrádi, B.; Alexander, D.; Warner, J.; Shinohara, H.; Ruemmeli, M. H.; Pichler, T. et al. La@C82 as a spin-active filling of SWCNTs: ESR study of magnetic and photophysical properties. Phys. Status Solidi B 2008, 245, 2042–2046.

15

Nie, M. Z.; Xiong, J.; Zhao, C.; Meng, H. B.; Zhang, K.; Han, Y. B.; Li, J.; Wang, B. W.; Feng, L.; Wang, C. R. et al. Luminescent single- molecule magnet of metallofullerene DyErScN@Ih-C80. Nano Res. 2019, 12, 1727–1731.

16

Zhang, J. Y.; Porfyrakis, K.; Morton, J. J. L.; Sambrook, M. R.; Harmer, J.; Xiao, L.; Ardavan, A.; Briggs, G. A. D. Photoisomerization of a fullerene dimer. J. Phys. Chem. C 2008, 112, 2802–2804.

17

Farrington, B. J.; Jevric, M.; Rance, G. A.; Ardavan, A.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. Chemistry at the nanoscale: Synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew. Chem., Int. Ed. 2012, 51, 3587–3590.

18

Plant, S. R.; Jevric, M.; Morton, J. J. L.; Ardavan, A.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem. Sci. 2013, 4, 2971–2975.

19

Veldhorst, M.; Yang, C. H.; Hwang, J. C. C.; Huang, W.; Dehollain, J. P.; Muhonen, J. T.; Simmons, S.; Laucht, A.; Hudson, F. E.; Itoh, K. M. et al. A two-qubit logic gate in silicon. Nature 2015, 526, 410–414.

20

Filidou, V.; Simmons, S.; Karlen, S. D.; Giustino, F.; Anderson, H. L.; Morton, J. J. L. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat. Phys. 2012, 8, 596–600.

21

Shulman, M. D.; Dial, O. E.; Harvey, S. P.; Bluhm, H.; Umansky, V.; Yacoby, A. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 2012, 336, 202–205.

22

DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, L. S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S. M. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 2009, 460, 240–244.

23

Benjamin, S. C.; Ardavan, A.; Briggs, G. A. D.; Britz, D. A.; Gunlycke, D.; Jefferson, J.; Jones, M. A. G.; Leigh, D. F.; Lovett, B. W.; Khlobystov, A. N. et al. Towards a fullerene-based quantum computer. J. Phys. Condens. Matter 2006, 18, S867–S883.

24

Shinohara, H.; Inakuma, M.; Hayashi, N.; Sato, H.; Saito, Y.; Kato, T.; Bandow, S. Spectroscopic properties of isolated Sc3@C82 metallofullerene. J. Phys. Chem. 1994, 98, 8597–8599.

25

Wang, T. S.; Wu, J. Y.; Xu, W.; Xiang, J. F.; Lu, X.; Li, B.; Jiang, L.; Shu, C. Y.; Wang, C. R. Spin divergence induced by exohedral modification: ESR study of Sc3C2@C80 fulleropyrrolidine. Angew. Chem., Int. Ed. 2010, 49, 1786–1789.

26

Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M. et al. Small- bandgap endohedral metallofullerenes in high yield and purity. Nature 1999, 401, 55–57.

27

Krause, M.; Dunsch, L. Isolation and characterisation of Two Sc3N@C80 isomers. ChemPhysChem 2004, 5, 1445–1449.

28

Meng, H. B.; Zhao, C.; Li, Y. J.; Nie, M. Z.; Wang, C. R.; Wang, T. S. An implanted paramagnetic metallofullerene probe within a metal- organic framework. Nanoscale 2018, 10, 3291–3298.

29

Maggini, M.; Scorrano, G.; Prato, M. Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 1993, 115, 9798–9799.

30

Park, J. M.; Park, S. K.; Yoon, W. S.; Kim, J. H.; Kim, D. W.; Choi, T. L.; Park, S. Y. Designing thermally stable conjugated polymers with balanced ambipolar field-effect mobilities by incorporating cyanovinylene linker unit. Macromolecules 2016, 49, 2985–2992.

31

Meng, H. B.; Zhao, C.; Nie, M. Z.; Wang, C. R.; Wang, T. S. Triptycene molecular rotors mounted on metallofullerene Sc3C2@C80 and their spin-rotation couplings. Nanoscale 2018, 10, 18119–18123.

32

Kurihara, H.; Iiduka, Y.; Rubin, Y.; Waelchli, M.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Unexpected formation of a Sc3C2@C80 bisfulleroid derivative. J. Am. Chem. Soc. 2012, 134, 4092–4095.

Nano Research
Pages 4658-4663
Cite this article:
Meng H, Chai Y, Zhao C, et al. Covalently bonded two spin centers of paramagnetic metallofullerene dimer. Nano Research, 2021, 14(12): 4658-4663. https://doi.org/10.1007/s12274-021-3398-8
Topics:
Metrics & Citations  
Article History
Copyright
Return