Graphical Abstract

Paramagnetic endohedral metallofullerenes with well protected unpaired spin have potential applications in molecular-scale qubit processing and magnetoreception system. In this study, a paramagnetic metallofullerene Sc3C2@C80 dimer with covalently bonded two spin centers was synthesized. Electron paramagnetic resonance (EPR) results further revealed the varied spin-nuclei couplings and paramagnetic property for Sc3C2@C80 dimer. Briefly, the Sc3C2@C80 dimer in toluene solution shows EPR hyperfine splittings originating from the spin-Sc couplings. However, the Sc3C2@C80 dimer in solid state shows the disappearance of hyperfine structure and a single EPR signal caused by its two-spin-center structure. The transformation of EPR signals can be further finely modulated by controlling the dynamic motion of Sc3C2@C80 dimer in chloronaphthalene. The Sc3C2@C80 dimer with two spin centers possesses varied paramagnetic properties, demonstrating its potential as new magnetic material.
Atzori, M.; Chiesa, A.; Morra, E.; Chiesa, M.; Sorace, L.; Carretta, S.; Sessoli, R. A two-qubit molecular architecture for electron-mediated nuclear quantum simulation. Chem. Sci. 2018, 9, 6183–6192.
Boulon, M. E.; Fernandez, A.; Moreno Pineda, E.; Chilton, N. F.; Timco, G.; Fielding, A. J.; Winpenny, R. E. P. Measuring spin … spin interactions between heterospins in a hybrid [2]rotaxane. Angew. Chem. 2017, 129, 3934–3937.
Bader, K.; Dengler, D.; Lenz, S.; Endeward, B.; Jiang, S. D.; Neugebauer, P.; van Slageren, J. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 2014, 5, 5304.
Ferrando-Soria, J.; Magee, S. A.; Chiesa, A.; Carretta, S.; Santini, P.; Vitorica-Yrezabal, I. J.; Tuna, F.; Whitehead, G. F. S.; Sproules, S.; Lancaster, K. M. et al. Switchable interaction in molecular double qubits. Chem 2016, 1, 727–752.
Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 2002, 65, 032322.
Morton, J. J. L.; Tyryshkin, A. M.; Ardavan, A.; Porfyrakis, K.; Lyon, S. A.; Andrew, D. Briggs, G. Electron spin relaxation of N@C60 in CS2. J. Chem. Phys. 2006, 124, 014508.
Gil-Ramírez, G.; Shah, A.; El Mkami, H.; Porfyrakis, K.; Briggs, G. A. D.; Morton, J. J. L.; Anderson, H. L.; Lovett, J. E. Distance measurement of a noncovalently bound Y@C82 pair with double electron electron resonance spectroscopy. J. Am. Chem. Soc. 2018, 140, 7420–7424.
Zhou, S.; Yamamoto, M.; Briggs, G. A. D.; Imahori, H.; Porfyrakis, K. Probing the dipolar coupling in a heterospin endohedral fullerene- phthalocyanine dyad. J. Am. Chem. Soc. 2016, 138, 1313–1319.
Yang, W.; Velkos, G.; Liu, F. P.; Sudarkova, S. M.; Wang, Y. F.; Zhuang, J. X.; Zhang, H. N.; Li, X.; Zhang, X. X.; Büchner, B. et al. Single molecule magnetism with strong magnetic anisotropy and enhanced Dy…Dy coupling in three isomers of Dy-oxide clusterfullerene Dy2O@C82. Adv. Sci. 2019, 6, 1901352.
Liu, Z.; Dong, B. W.; Meng, H. B.; Xu, M. X.; Wang, T. S.; Wang, B. W.; Wang, C. R.; Jiang, S. D.; Gao, S. Qubit crossover in the endohedral fullerene Sc3C2@C80. Chem. Sci. 2018, 9, 457–462.
Morton, J. J. L.; Tyryshkin, A. M.; Ardavan, A.; Porfyrakis, K.; Lyon, S. A.; Briggs, G. A. D. Environmental effects on electron spin relaxation in N@C60. Phys. Rev. B 2007, 76, 085418.
Cornes, S. P.; Zhou, S.; Porfyrakis, K. Synthesis and EPR studies of the first water-soluble N@C60 derivative. Chem. Commun. 2017, 53, 12742–12745.
Liu, G. Q.; Khlobystov, A. N.; Charalambidis, G.; Coutsolelos, A. G.; Briggs, G. A. D.; Porfyrakis, K. N@C60-porphyrin: A dyad of two radical centers. J. Am. Chem. Soc. 2012, 134, 1938–1941.
Ćirić, L.; Pierzchala, K.; Sienkiewicz, A.; Magrez, A.; Náfrádi, B.; Alexander, D.; Warner, J.; Shinohara, H.; Ruemmeli, M. H.; Pichler, T. et al. La@C82 as a spin-active filling of SWCNTs: ESR study of magnetic and photophysical properties. Phys. Status Solidi B 2008, 245, 2042–2046.
Nie, M. Z.; Xiong, J.; Zhao, C.; Meng, H. B.; Zhang, K.; Han, Y. B.; Li, J.; Wang, B. W.; Feng, L.; Wang, C. R. et al. Luminescent single- molecule magnet of metallofullerene DyErScN@Ih-C80. Nano Res. 2019, 12, 1727–1731.
Zhang, J. Y.; Porfyrakis, K.; Morton, J. J. L.; Sambrook, M. R.; Harmer, J.; Xiao, L.; Ardavan, A.; Briggs, G. A. D. Photoisomerization of a fullerene dimer. J. Phys. Chem. C 2008, 112, 2802–2804.
Farrington, B. J.; Jevric, M.; Rance, G. A.; Ardavan, A.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. Chemistry at the nanoscale: Synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew. Chem., Int. Ed. 2012, 51, 3587–3590.
Plant, S. R.; Jevric, M.; Morton, J. J. L.; Ardavan, A.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem. Sci. 2013, 4, 2971–2975.
Veldhorst, M.; Yang, C. H.; Hwang, J. C. C.; Huang, W.; Dehollain, J. P.; Muhonen, J. T.; Simmons, S.; Laucht, A.; Hudson, F. E.; Itoh, K. M. et al. A two-qubit logic gate in silicon. Nature 2015, 526, 410–414.
Filidou, V.; Simmons, S.; Karlen, S. D.; Giustino, F.; Anderson, H. L.; Morton, J. J. L. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat. Phys. 2012, 8, 596–600.
Shulman, M. D.; Dial, O. E.; Harvey, S. P.; Bluhm, H.; Umansky, V.; Yacoby, A. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 2012, 336, 202–205.
DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, L. S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S. M. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 2009, 460, 240–244.
Benjamin, S. C.; Ardavan, A.; Briggs, G. A. D.; Britz, D. A.; Gunlycke, D.; Jefferson, J.; Jones, M. A. G.; Leigh, D. F.; Lovett, B. W.; Khlobystov, A. N. et al. Towards a fullerene-based quantum computer. J. Phys. Condens. Matter 2006, 18, S867–S883.
Shinohara, H.; Inakuma, M.; Hayashi, N.; Sato, H.; Saito, Y.; Kato, T.; Bandow, S. Spectroscopic properties of isolated Sc3@C82 metallofullerene. J. Phys. Chem. 1994, 98, 8597–8599.
Wang, T. S.; Wu, J. Y.; Xu, W.; Xiang, J. F.; Lu, X.; Li, B.; Jiang, L.; Shu, C. Y.; Wang, C. R. Spin divergence induced by exohedral modification: ESR study of Sc3C2@C80 fulleropyrrolidine. Angew. Chem., Int. Ed. 2010, 49, 1786–1789.
Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M. et al. Small- bandgap endohedral metallofullerenes in high yield and purity. Nature 1999, 401, 55–57.
Krause, M.; Dunsch, L. Isolation and characterisation of Two Sc3N@C80 isomers. ChemPhysChem 2004, 5, 1445–1449.
Meng, H. B.; Zhao, C.; Li, Y. J.; Nie, M. Z.; Wang, C. R.; Wang, T. S. An implanted paramagnetic metallofullerene probe within a metal- organic framework. Nanoscale 2018, 10, 3291–3298.
Maggini, M.; Scorrano, G.; Prato, M. Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 1993, 115, 9798–9799.
Park, J. M.; Park, S. K.; Yoon, W. S.; Kim, J. H.; Kim, D. W.; Choi, T. L.; Park, S. Y. Designing thermally stable conjugated polymers with balanced ambipolar field-effect mobilities by incorporating cyanovinylene linker unit. Macromolecules 2016, 49, 2985–2992.
Meng, H. B.; Zhao, C.; Nie, M. Z.; Wang, C. R.; Wang, T. S. Triptycene molecular rotors mounted on metallofullerene Sc3C2@C80 and their spin-rotation couplings. Nanoscale 2018, 10, 18119–18123.
Kurihara, H.; Iiduka, Y.; Rubin, Y.; Waelchli, M.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Unexpected formation of a Sc3C2@C80 bisfulleroid derivative. J. Am. Chem. Soc. 2012, 134, 4092–4095.