AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands

Seung Ji Kang1Haeleen Hong1Chanho Jeong2Ju Seung Lee1Hyewon Ryu1Jae-hun Yang1Jong Uk Kim1Yiel Jae Shin1Tae-il Kim1,2,3( )
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Biomedical Institute for Convergence (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

The miniaturization and high integration of devices demand significant thermal management materials. Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arrays. A device in multiple chip array is affected by heat from adjacent devices, along with thermal conductive composite. To address this problem, we present a nano composite of aligned boron nitride (BN) nanosheet islands with porous polydimethylsiloxane (PDMS) foam to have mechanical stability and non-thermal interference. The islands of tetrahedrally-structured BN in the composite have a high thermal conductivity of 1.219 W·m-1·K-1 in the through-plane direction (11.234 W·m-1·K-1 in the in-plane direction) with 16 wt.% loading of BN. On the other hand, porous PDMS foam has a low thermal conductivity of 0.0328 W·m-1·K-1 in the through-plane direction at 70% porosity. Heat pathways are then formed only in the structured BN islands of the composite. The porous PDMS foam can be applied as a thermal barrier between structured BN islands to inhibit thermal interference in multiple device arrays. Furthermore, this composite can maintain selective thermal dissipation performance with 70% tensile strain. Another beauty of the work is that it could have guided heat dissipation by assembling of multiple layers which have high vertical thermal conductive islands, while inhibiting thermal interference. The selective heat dissipating composite can be applied as a heatsink for multiple chip arrays electronics.

Electronic Supplementary Material

Download File(s)
12274_2021_3400_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655-2694.
[2]
Yu, A. P.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 2007, 111, 7565-7569.
[3]
Meng, X.; Chen, T. X.; Li, Y.; Liu, S. Y.; Pan, H.; Ma, Y. N.; Chen, Z. X.; Zhang, Y. P.; Zhu, S. M. Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency. Nano Res. 2019, 12, 2498-2508.
[4]
Kargar, F.; Barani, Z.; Balinskiy, M.; Magana, A. S.; Lewis, J. S.; Balandin, A. A. Dual-functional graphene composites for electromagnetic shielding and thermal management. Adv. Electron. Mater. 2019, 5, 1800558.
[5]
Fu, Y. F.; Hansson, J.; Liu, Y.; Chen, S. J.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y. X.; Zhang, Y.; Zhang, Z. B. et al. Graphene related materials for thermal management. 2D Mater. 2019, 7, 012001.
[6]
Mamunya, Y. P.; Davydenko, V. V.; Pissis, P.; Lebedev, E. V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887-1897.
[7]
Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036-2045.
[8]
Zhi, C. Y.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 2009, 19, 1857-1862.
[9]
Lewis, J. S.; Barani, Z.; Magana, A. S.; Kargar, F.; Balandin, A. A. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater. Res. Express 2019, 6, 085325.
[10]
Hong, H.; Kim, J. U.; Kim, T. I. Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers 2017, 9, 413.
[11]
Li, S.; Zhang, Y. M.; Han, J. C.; Zhou, Y. F. Fabrication and characterization of SiC whisker reinforced reaction bonded SiC composite. Ceram. Int. 2013, 39, 449-455.
[12]
Kim, J.; Kwon, J.; Lee, D.; Kim, M.; Han, H. Heat dissipation properties of polyimide nanocomposite films. Korean J. Chem. Eng. 2016, 33, 3245-3250.
[13]
Yang, Y.; Ding, S.; Araki, T.; Jiu, J. T.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401-414.
[14]
Wu, M. Y.; Zhao, J.; Curley, N. J.; Chang, T. H.; Ma, Z. Q.; Arnold, M. S. Biaxially stretchable carbon nanotube transistors. J. Appl. Phys. 2017, 122, 124901.
[15]
Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919-926.
[16]
Qi, G. Q.; Yang, J.; Bao, R. Y.; Xia, D. Y.; Cao, M.; Yang, W.; Yang, M. B.; Wei, D. C. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802-813.
[17]
Chen, J.; Huang, X. Y.; Zhu, Y. K.; Jiang, P. K. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 2017, 27, 1604754.
[18]
Wang, Y. L.; Xu, L. S.; Yang, Z.; Xie, H.; Jiang, P. Q.; Dai, J. Q.; Luo, W.; Yao, Y. G.; Hitz, E.; Yang, R. G. et al. High temperature thermal management with boron nitride nanosheets. Nanoscale 2018, 10, 167-173.
[19]
Maqbool, M.; Guo, H. C.; Bashir, A.; Usman, A.; Abid, A. Y.; He, G. S.; Ren, Y. J.; Ali, Z.; Bai, S. L. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene-graphene interface. Nano Res. 2020, 13, 2741-2748.
[20]
Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.
[21]
Kim, K.; Kim, J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos. Part B 2016, 93, 67-74.
[22]
Wu, Z. H.; Xu, C.; Ma, C. Q.; Liu, Z. B.; Cheng, H. M.; Ren, W. C. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 2019, 31, 1900199.
[23]
Gan, W. T.; Chen, C. J.; Wang, Z. Y.; Pei, Y.; Ping, W. W.; Xiao, S. L.; Dai, J. Q.; Yao, Y. G.; He, S. M.; Zhao, B. H. et al. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Adv. Funct. Mater. 2020, 30, 1909196.
[24]
Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.
[25]
Fujihara, T.; Cho, H. B.; Kanno, M.; Nakayama, T.; Suzuki, T.; Jiang, W. H.; Suematsu, H.; Niihara, K. Three-dimensional structural control and analysis of hexagonal boron nitride nanosheets assembly in nanocomposite films induced by electric field concentration. Jpn. J. Appl. Phys. 2014, 53, 02BD12.
[26]
Lall, B. S.; Guenin, B. M.; Molnar, R. J. Methodology for thermal evaluation of multichip modules. IEEE Trans. Compon. Pack. Manuf. Technol. 1995, 18, 758.
[27]
Lu, H. L.; Lu, Y. J.; Zhu, L. H.; Lin, Y.; Guo, Z. Q.; Liu, T.; Gao, Y. L.; Chen, G. L.; Chen, Z. Efficient measurement of thermal coupling effects on multichip light-emitting diodes. IEEE Trans. Power Electron. 2017, 32, 9280-9292.
[28]
Colaco, A. M.; Kurian, C. P.; Kini, S. G.; Colaco, S. G.; Johny, C. Thermal characterization of multicolor LED luminaire. Microelectron. Reliab. 2017, 78, 379-388.
[29]
Yoon, Y.; Hyeon, S.; Kim, D. R.; Lee, K. S. Minimizing thermal interference effects of multiple heat sources for effective cooling of power conversion electronics. Energy Convers. Manag. 2018, 174, 218-226.
[30]
Mohanty, S. K.; Chen, Y. Y.; Yeh, P. H.; Horng, R. H. Thermal management of GaN-on-Si High electron Mobility transistor by copper filled Micro-trench Structure. Sci. Rep. 2019, 9, 19691.
[31]
Li, L.; Fukui. A.; Wakejima, A. Bonding GaN on high thermal conductivity graphite composite with adequate interfacial thermal conductance for high power electronics applications. Appl. Phys. Lett. 2020, 116, 142105.
[32]
Kim, T. H.; Choi, W. M.; Kim, D. H.; Meitl, M. A.; Menard, E.; Jiang, H. Q.; Carlisle, J. A.; Rogers, J. A. Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management. Adv. Mater. 2008, 20, 2171-2176.
[33]
Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.
[34]
Min, Y. J.; Kang, K. H.; Kim, D. E. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res. 2018, 11, 2366-2378.
[35]
Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.
[36]
Zhang, H. L.; Lan, Y.; Qiu, S. Y.; Min, S.; Jang, H.; Park, J.; Gong, S. Q.; Ma, Z. Q. Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Adv. Mater. Technol. 2021, 6, 2000759.
[37]
Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J. S.; Aytan, E.; Lake, R. K.; Balandin, A. A. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 2018, 10, 37555-37565.
[38]
Li, T.; Song, J. W.; Zhao, X. P.; Yang, Z.; Pastel, G.; Xu, S. M.; Jia, C.; Dai, J. Q.; Chen, C. J.; Gong, A. et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, eaar3724.
[39]
Carson, J. K.; Lovatt, S. J.; Tanner, D. J.; Cleland, A. C. Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transf. 2005, 48, 2150-2158.
[40]
Tang, Y. F.; Zheng, Q. F.; Chen, B.; Ma, Z. Q.; Gong, S. Q. A new class of flexible nanogenerators consisting of porous aerogel films driven by mechanoradicals. Nano Energy 2017, 38, 401-411.
[41]
Zheng, Q. F.; Xie, R. S.; Fang, L. M.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. Oxygen-deficient and nitrogen-doped MnO2 nanowire-reduced graphene oxide-cellulose nanofibril aerogel electrodes for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 24407-24417.
[42]
Smith, D. S.; Alzina, A.; Bourret, J.; Nait-Ali, B.; Pennec, F.; Tessier-Doyen, N.; Otsu, K.; Matsubara, H.; Elser, P.; Gonzenbach, U. T. Thermal conductivity of porous materials. J. Mater. Res. 2013, 28, 2260-2272.
[43]
Qiu, L.; Zou, H. Y.; Tang, D. W.; Wen, D. S.; Feng, Y. H.; Zhang, X. X. Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Appl. Therm. Eng. 2018, 130, 1004-1011.
[44]
Chen, G. G.; Chen, C. J.; Pei, Y.; He, S. M.; Liu, Y.; Jiang, B.; Jiao, M. L.; Gan, W. T.; Liu, D. P.; Yang, B. et al. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 2020, 383, 123109.
[45]
Chen, C. J.; Hu, L. B. Super elastic and thermally insulating carbon aerogel: Go tubular like polar bear hair. Matter 2019, 1, 36-38.
Nano Research
Pages 3253-3259
Cite this article:
Kang SJ, Hong H, Jeong C, et al. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Research, 2021, 14(9): 3253-3259. https://doi.org/10.1007/s12274-021-3400-5
Topics:
Part of a topical collection:

790

Views

32

Crossref

29

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 04 December 2020
Revised: 05 February 2021
Accepted: 10 February 2021
Published: 18 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return