AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Au nanoring arrays with tunable morphological features and plasmonic resonances

Shilin Mu1Hongxu Chen2( )Chenyu Shi1Junhu Zhang1( )Bai Yang1
State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
College of Material and Textile Engineering Jiaxing University Jiaxing 314001 China
Show Author Information

Graphical Abstract

Abstract

Gold nanoring arrays are widely applied in various fields benefitting from their localized surface plasmon resonance (LSPR) properties. A key advantage of gold nanoring arrays is that the dipole resonance peak can be systematically tuned by changing the dimensions of gold nanoring arrays. However, most of the currently reported methods for preparing gold nanoring arrays cannot conveniently control the heights of the nanorings at a low cost. Here we introduce a facile method for preparing gold nanoring arrays with tunable plasmonic resonances using colloidal lithography. The dimensions of the nanorings including diameters, lattice constants, even the heights of the nanorings can be conveniently varied. Fourier transform near-infrared (FT-NIR) absorption spectroscopy was used to obtain the plasmonic resonance spectra of the nanoring arrays. All the prepared gold nanoring arrays exhibited a strong NIR or infrared (IR) plasmonic resonance which can be tuned by varying the nanoring dimensions. This versatile method can also be used to fabricate other types of plasmonic nanostructures, such as gold nanocone arrays. The obtained gold nanoring arrays as well as nanocone arrays may have potential applications in surface-enhanced spectroscopy or plasmonic sensing.

Electronic Supplementary Material

Download File(s)
12274_2021_3402_MOESM1_ESM.pdf (1.7 MB)

References

1

Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678-2685.

2

Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046-4055.

3

Wang, B.; Zou, Y. T.; Lu, H. Y.; Kong, W. C.; Singh, S. C.; Zhao, C.; Yao, C. N.; Xing, J.; Zheng, X.; Yu, Z. et al. Boosting perovskite photodetector performance in NIR using plasmonic bowtie nanoantenna arrays. Small 2020, 16, 2001417.

4

Son, T.; Lee, D.; Lee, C.; Moon, G.; Ha, G. E.; Lee, H.; Kwak, H.; Cheong, E.; Kim, D. Superlocalized three-dimensional live imaging of mitochondrial dynamics in neurons using plasmonic nanohole arrays. ACS Nano 2019, 13, 3063-3074.

5

Caprettini, V.; Huang, J. A.; Moia, F.; Jacassi, A.; Gonano, C. A.; Maccaferri, N.; Capozza, R.; Dipalo, M.; De Angelis, F. Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Adv. Sci. 2018, 5, 1800560.

6

Park, S. G.; Xiao, X. F.; Min, J.; Mun, C. W.; Jung, H. S.; Giannini, V.; Weissleder, R.; Maier, S. A.; Im, H.; Kim, D. H. Self-assembly of nanoparticle-spiked pillar arrays for plasmonic biosensing. Adv. Funct. Mater. 2019, 29, 1904257.

7

Zheng, C. Y.; Palacios, E.; Zhou, W. J.; Hadibrata, W.; Sun, L.; Huang, Z. Y.; Schatz, G. C.; Aydin, K.; Mirkin, C. A. Tunable fluorescence from dye-modified DNA-assembled plasmonic nanocube arrays. Adv. Mater. 2019, 31, 1904448.

8

Tseng, M. L.; Yang, J.; Semmlinger, M.; Zhang, C.; Nordlander, P.; Halas, N. J. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett. 2017, 17, 6034-6039.

9

Tran, T. T.; Wang, D. Q.; Xu, Z. Q.; Yang, A. K.; Toth, M.; Odom, T. W.; Aharonovich, I. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 2017, 17, 2634-2639.

10

Lee, S. W.; Lee, K. S.; Ahn, J.; Lee, J. J.; Kim, M. G.; Shin, Y. B. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 2011, 5, 897-904.

11

Flauraud, V.; Regmi, R.; Winkler, P. M.; Alexander, D. T. L.; Rigneault, H.; van Hulst, N. F.; García-Parajo, M. F.; Wenger, J.; Brugger, J. In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement. Nano Lett. 2017, 17, 1703-1710.

12

Nan, J. J.; Zhu, S. J.; Ye, S. S.; Sun, W. H.; Yue, Y.; Tang, X. D.; Shi, J. W.; Xu, X. S.; Zhang, J. H.; Yang, B. Ultrahigh-sensitivity sandwiched plasmon ruler for label-free clinical diagnosis. Adv. Mater. 2020, 32, 1905927.

13

Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779-787.

14

Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755-1762.

15

Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Käll, M.; Bryant, G. W.; García de Abajo, F. J. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.

16

Banaee, M. G.; Crozier, K. B. Gold nanorings as substrates for surface-enhanced Raman scattering. Opt. Lett. 2010, 35, 760-762.

17

Ye, J.; Shioi, M.; Lodewijks, K.; Lagae, L.; Kawamura, T.; van Dorpe, P. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl. Phys. Lett. 2010, 97, 163106.

18

Teo, S. L.; Lin, V. K.; Marty, R.; Large, N.; Llado, E. A.; Arbouet, A.; Girard, C.; Aizpurua, J.; Tripathy, S.; Mlayah, A. Gold nanoring trimers: A versatile structure for infrared sensing. Opt. Express 2010, 18, 22271-22282.

19

Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108.

20

Toma, M.; Cho, K.; Wood, J. B.; Corn, R. M. Gold nanoring arrays for near infrared plasmonic biosensing. Plasmonics 2014, 9, 765- 772.

21

Chow, T. H.; Lai, Y. H.; Cui, X. M.; Lu, W. Z.; Zhuo, X. L.; Wang, J. F. Colloidal gold nanorings and their plasmon coupling with gold nanospheres. Small 2019, 15, 1902608.

22

Cetin, A. E.; Altug, H. Fano Resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 2012, 6, 9989-9995.

23

Hao, F.; Sonnefraud, Y.; van Dorpe, P.; Maier, S. A.; Halas, N. J.; Nordlander, P. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008, 8, 3983-3988.

24

Hao, F.; Nordlander, P.; Sonnefraud, Y.; van Dorpe, P.; Maier, S. A. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 2009, 3, 643-652.

25

Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; van Dorpe, P.; Nordlander, P.; Maier, S. A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 2010, 4, 1664-1670.

26

Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E. B.; Tunnermann, A. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett. 2015, 15, 1025-1030.

27

Near, R.; Tabor, C.; Duan, J. S.; Pachter, R.; El-Sayed, M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012, 12, 2158-2164.

28

Lorente-Crespo, M.; Wang, L.; Ortuño, R.; García-Meca, C.; Ekinci, Y.; Martínez, A. Magnetic hot spots in closely spaced thick gold nanorings. Nano Lett. 2013, 13, 2654-2661.

29

Jiang, H.; Sabarinathan, J. Effects of coherent interactions on the sensing characteristics of near-infrared gold nanorings. J. Phys. Chem. C 2010, 114, 15243-15250.

30

Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y. T.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638-6646.

31

Wang, T. Q.; Zhang, J. H.; Xue, P. H.; Chen, H. X.; Ye, S. S.; Wang, S. L.; Yu, Y.; Yang, B. Nanotransfer printing of gold disk, ring and crescent arrays and their IR range optical properties. J. Mater. Chem. C 2014, 2, 2333-2340.

32

Kasani, S.; Zheng, P.; Wu, N. Q. Tailoring optical properties of a large-area plasmonic gold nanoring array pattern. J. Phys. Chem. C 2018, 122, 13443-13449.

33

Kelf, T. A.; Tanaka, Y.; Matsuda, O.; Larsson, E. M.; Sutherland, D. S.; Wright, O. B. Ultrafast vibrations of gold nanorings. Nano Lett. 2011, 11, 3893-3898.

34

Larsson, E. M.; Alegret, J.; Käll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface Plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256-1263.

35

Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self- assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249-4269.

36

Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411-3424.

37

Wang, Y. D.; Zhang, M. Y.; Lai, Y. K.; Chi, L. F. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36-61.

38

Ke, Y. J.; Ye, S. S.; Hu, P.; Jiang, H.; Wang, S. C.; Yang, B.; Zhang, J. H.; Long, Y. Unpacking the toolbox of two-dimensional nanostructures derived from nanosphere templates. Mater. Horiz. 2019, 6, 1380-1408.

39

Ye, S. S.; Wang, H. Y.; Wang, H. L.; Chang, L. X.; Zhang, J. H.; Yang, B. Rationally designed particle-in-aperture hybrid arrays as large-scale, highly reproducible SERS substrates. J. Mater. Chem. C 2017, 5, 11631-11639.

40

Chen, H. X.; Mu, S. L.; Fang, L. P.; Shen, H. Z.; Zhang, J. H.; Yang, B. Polymer-assisted fabrication of gold nanoring arrays. Nano Res. 2017, 10, 3346-3357.

41

Ye, S. S.; Wang, H. Y.; Su, H. Y.; Chang, L. X.; Wang, S. L.; Zhang, X. M.; Zhang, J. H.; Yang, B. Facile fabrication of homogeneous and gradient plasmonic arrays with tunable optical properties via thermally regulated surface charge density. J. Mater. Chem. C 2017, 5, 3962-3972.

42

Li, Z. B.; Nan, J. J.; Zhang, X. M.; Ye, S. S.; Shen, H. Z.; Wang, S. L.; Fang, L. P.; Xue, P. H.; Zhang, J. H.; Yang, B. Modulate the morphology and spectroscopic property of gold nanoparticle arrays by polymer-assisted thermal treatment. J. Phys. Chem. C 2015, 119, 11839-11845.

43

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.

44

Fusco, Z.; Rahmani, M.; Bo, R. H.; Tran-Phu, T.; Lockrey, M.; Motta, N.; Neshev, D.; Tricoli, A. High-temperature large-scale self- assembly of highly faceted monocrystalline Au metasurfaces. Adv. Funct. Mater. 2019, 29, 1806387.

45

Tsai, C. Y.; Wu, C. Y.; Chang, K. H.; Lee, P. T. Slab thickness dependence of localized surface plasmon resonance behavior in gold nanorings. Plasmonics 2013, 8, 1011-1016.

46

Knoben, W.; Brongersma, S. H.; Crego-Calama, M. Plasmonic Au islands on polymer nanopillars. Nanotechnology 2011, 22, 295303.

Nano Research
Pages 4674-4679
Cite this article:
Mu S, Chen H, Shi C, et al. Au nanoring arrays with tunable morphological features and plasmonic resonances. Nano Research, 2021, 14(12): 4674-4679. https://doi.org/10.1007/s12274-021-3402-3
Topics:

770

Views

10

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 22 December 2020
Revised: 27 January 2021
Accepted: 17 February 2021
Published: 20 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return