AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media

Ming Liu1Lingjun Kong1Xuemin Wang1Jie He1Jijie Zhang1Jian Zhu1Xian-He Bu1,2( )
School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule Based Material ChemistryNankai University Tianjin 300350 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
Show Author Information

Graphical Abstract

Abstract

Carboxylic acid-based metal-organic frameworks (MOFs) are normally passed for the "pre-catalysts" for oxygen evolution reaction (OER) due to the hydroxides constructed in-situ during its alkaline hydrolysis process (AHP) in lye. Whereas, it remains a mystery that they show advantageous activity over prototypical hydroxides when they are directly acted as OER catalysts. Herein, we propose for the first time that the steric hindrance effect of Nafion can induce enhanced catalytic activity of such MOFs. Different from conventional catalysts without AHP, the Nafion with 3D structure weakens the AHP of Co-MOF nanoribbons, thus forming small size and low crystallinity species (cobalt hydroxide) with more active sites. And the existence of Nafion also optimizes its electronic structure, which is confirmed by transmission electron microscopy (TEM), in-situ UV absorption spectra, in-situ Raman spectroscopy and so on. Compared with Co-MOF-K obtained by directly immersing the Co-MOF nanoribbons in 1.0 M KOH, the Co-MOF-NK obtained by AHP of Co-MOF mixed with Nafion shows better catalytic activity. Based on the above inspiration, we realized the low overpotential of 268 mV at 10 mA·cm−2 by preparing CoFe-MOF-NK. This work provides a new understanding of the structural reconstruction of MOFs in the field of electrocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2021_3404_MOESM1_ESM.pdf (5.2 MB)

References

1

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

2

Kong, L. J.; Zhong, M.; Shuang, W.; Xu, Y. H.; Bu, X. H. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 2020, 49, 2378–2407.

3

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self- modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

4

Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

5

Xiong, W. F.; Li, H. F.; You, H. H.; Cao, M. N.; Cao, R. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Nat. Sci. Rev. 2020, 7, 609–619.

6

Zhang, J.; Zhang, Q. Y; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv Mater. 2019, 31, 1808167.

7

Huang, Z. D.; Xu, B.; Li, Z. G.; Ren, J. W.; Mei, H.; Liu, Z. N.; Xie, D. G.; Zhang, H. B.; Dai, F. N.; Wang, R. M. et al. Accurately regulating the electronic structure of NixSey@NC core-shell nanohybrids through controllable selenization of a Ni-MOF for pH-universal hydrogen evolution reaction. Small 2020, 16, 2004231.

8

Wang, X. M.; Liu, M.; Yu, H. C.; Zhang, H.; Yan, S. H.; Zhang, C.; Liu, S. X. Oxygen-deficient 3D-ordered multistage porous interfacial catalysts with enhanced water oxidation performance. J. Mater. Chem. A 2020, 8, 22886–22892.

9

Guo, X. W.; Xu, Y. X.; Cheng, Y.; Zhang, Y. C.; Pang, H. Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. Appl. Mater. Today 2020, 18, 100517.

10

Guo, C. X.; Jiao, Y.; Zheng, Y.; Luo, J.; Davey, K.; Qiao, S. Z. Intermediate modulation on noble metal hybridized to 2D metal- organic framework for accelerated water electrocatalysis. Chem 2019, 5, 2429–2441.

11

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable Zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem. , Int. Ed. 2018, 130, 16398–16402.

12

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.

13

Xie, Q. X.; Zhou, D. J.; Li, P. S.; Cai, Z.; Xie, T. H.; Gao, T. F.; Chen, R. D.; Kuang, Y.; Sun, X. M. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019, 12, 2302–2306.

14

Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks/graphene-based materials: Preparations and applications. Adv. Funct. Mater. 2018, 28, 1804950.

15

Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

16

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

17

He, J.; Xu, J. L.; Yin, J. C.; Li, N.; Bu, X. H. Recent advances in luminescent metal-organic frameworks for chemical sensors. Sci. China. Mater. 2019, 62, 1655–1678.

18

Zheng, S. S.; Li, Q.; Xue, H. G.; Pang, H.; Xu, Q. A highly alkaline- stable metal oxide@metal-organic framework composite for high- performance electrochemical energy storage. Nat. Sci. Rev. 2020, 7, 305–314.

19

Xue, Z. Q.; Liu, K.; Liu, Q. L.; Li, Y. L.; Li, M. R.; Su, C. Y.; Ogiwara, N.; Kobayashi, H.; Kitagawa, H.; Liu, M. et al. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 2019, 10, 5048.

20

Li, J. T.; Huang, W. Z.; Wang, M. M.; Xi, S. B.; Meng, J. S.; Zhao, K. N.; Jin, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 2019, 4, 285–292.

21

Wang, X. M.; Zhang, H.; Yang, Z.; Zhang, C.; Liu, S. X. Ultrasound- treated metal-organic framework with efficient electrocatalytic oxygen evolution activity. Ultrason. Sonochem. 2019, 59, 104714.

22

Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336–8339.

23

Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

24

Su, X. Z.; Wang, Y.; Zhou, J.; Gu, S. Q.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292.

25

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

26

Miles, D. O.; Jiang, D. M.; Burrows, A. D.; Halls, J. E.; Marken, F. Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1, 4-benzenedicarboxylate, DMF = N, N-dimethylformamide) into porous electrochemically active cobalt hydroxide. Electrochem. Commun. 2013, 27, 9–13.

27

Li, W. J.; Xue, S.; Watzele, S.; Hou, S. J.; Fichtner, J.; Semrau, A. L.; Zhou, L. J.; Welle, A.; Bandarenka, A. S.; Fischer, R. A. Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal-organic frameworks. Angew. Chem. , Int. Ed. 2020, 59, 5837–5843.

28

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

29

Chen, G. B.; Zhang, J.; Wang, F. X.; Wang, L. L.; Liao, Z. Q.; Zschech, E.; Müllen, K.; Feng, X. L. Cobalt-based metal-organic framework nanoarrays as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. —Eur. J. 2018, 24, 18413–18418.

30

Zhang, H. B.; Xu, B.; Mei, H.; Mei, Y. J.; Zhang, S. Y.; Yang, Z. D.; Xiao, Z. Y.; Kang, W. P.; Sun, D. F. "Hot" alkaline hydrolysis of amorphous MOF microspheres to produce ultrastable bimetal hydroxide electrode with boosted cycling stability. Small 2019, 15, 1904663.

31

Xiao, Z. Y.; Mei, Y. J.; Yuan, S.; Mei, H.; Xu, B.; Bao, Y. X.; Fan, L. L.; Kang, W. P.; Dai, F. N.; Wang, R. M. et al. Controlled hydrolysis of metal-organic frameworks: Hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 2019, 13, 7024–7030.

32

Li, G. F.; Yang, D. L.; Chuang, P. Y. A. Defining nafion ionomer roles for enhancing alkaline oxygen evolution electrocatalysis. ACS Catal. 2018, 8, 11688–11698.

33

Kusoglu, A.; Weber, A. Z. New insights into perfluorinated sulfonic- acid ionomers. Chem. Rev. 2017, 117, 987–1104.

34

Allen, F. I.; Comolli, L. R.; Kusoglu, A.; Modestino, M. A.; Minor, A. M.; Weber, A. Z. Morphology of hydrated as-cast nafion revealed through cryo electron tomography. ACS Macro Lett. 2015, 4, 1–5.

35

He, Q. G.; Kusoglu, A.; Lucas, I. T.; Clark, K.; Weber, A. Z.; Kostecki, R. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes. J. Phys. Chem. B 2011, 115, 11650–11657.

36

Quezado, S.; Kwak, J. C. T.; Falk, M. An infrared study of water-ion interactions in perfluorosulfonate (Nafion) membranes. Can. J. Chem. 1984, 62, 958–966.

37

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

38

Lee, C.; Shin, K.; Jung, C.; Choi, P. P.; Henkelman, G.; Lee, H. M. Atomically embedded Ag via electrodiffusion boosts oxygen evolution of CoOOH nanosheet arrays. ACS Catal. 2020, 10, 562–569.

39

Zheng, W. R.; Liu, M. J.; Lee, L. Y. S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites. ACS Catal. 2020, 10, 81–92.

40

Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self- optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

41

Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

42

Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Bu, X. H. Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution. Small 2019, 15, 1903410.

43

Chen, D. W.; Qiao, M.; Lu, Y. R.; Hao, L.; Liu, D. D.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2018, 57, 8691–8696.

44

Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79–85.

45

Favaro, M.; Yang, J. H.; Nappini, S.; Magnano, E.; Toma, F. M.; Crumlin, E. J.; Yano, J.; Sharp, I. D. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient- pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 2017, 139, 8960–8970.

46

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; De Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

47

Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

48

Yu, Z. Y.; Duan, Y.; Liu, J. D.; Chen, Y.; Liu, X. K.; Liu, W.; Ma, T.; Li, Y.; Zheng, X. S.; Yao, T. et al. Unconventional CN vacancies suppress iron-leaching in prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nat. Commun. 2019, 10, 2799.

49

Zhu, Y. P.; Chen, H. C.; Hsu, C. S.; Lin, T. S.; Chang, C. J.; Chang, S. C.; Tsai, L. D.; Chen, H. M. Operando unraveling of the structural and chemical stability of p-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 2019, 4, 987–994.

50

Selvam, N. C. S.; Du, L. J.; Xia, B. Y.; Yoo, P. J.; You, B. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities. Adv. Funct. Mater. 2021, 31, 2008190.

51

Zhou, J.; Dou, Y. B.; Zhou, A.; Shu, L.; Chen, Y.; Li, J. R. Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 2018, 3, 1655–1661.

Nano Research
Pages 4680-4688
Cite this article:
Liu M, Kong L, Wang X, et al. Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Research, 2021, 14(12): 4680-4688. https://doi.org/10.1007/s12274-021-3404-1
Topics:

680

Views

42

Crossref

41

Web of Science

37

Scopus

5

CSCD

Altmetrics

Received: 27 December 2020
Revised: 05 February 2021
Accepted: 16 February 2021
Published: 14 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return