AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal–organic framework hybrid nanozymes for ultrasensitive detection of glucose

Jing Li1Jie Zhao1Shengqiang Li3Yang Chen1Weiqiang Lv4Jiahui Zhang1Libing Zhang1Zhen Zhang1( )Xiaoquan Lu1,2( )
Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry School of Science Tianjin University Tianjin 300072 China
Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou 730070 China
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin 300000 China
School of Physics University of Electronic Science and Technology Chengdu 611731 China
Show Author Information

Graphical Abstract

Abstract

The metal–organic frameworks (MOFs) are expected as ideal biomimetic enzymes for colorimetric glucose detection because of their large surface areas, well defined pore structures, tunable chemical composition, and multi-functional sites. However, the intrinsically chemical instability and low mimetic enzyme activity of MOFs hinder the application of them in imitating the enzyme reactions. In this work, we demonstrated a metal-MOF synergistic catalysis strategy, by loading Pt nanoparticles (Pt NPs) on MIL-88B-NH2 (Fe-MOF) to increase peroxidase-like activity for the detection of glucose. The induced electrons transfer from Pt atom to Fe atom accelerated the redox cycling of Fe3+/Fe2+, improved the overall efficiency of the peroxidase-like reaction, and enabled the efficient and robust colorimetric glucose detection, which was proved by both experiments and density functional theory (DFT) calculation. Additionally, the sensitivity and chemical stability of this synergistic effect strategy to detect the glucose are not affected by the complex external factors, which represented a great potential in fast, easy, sensitive, and specific recognition of clinical diabetes.

Electronic Supplementary Material

Download File(s)
12274_2021_3406_MOESM1_ESM.pdf (2.3 MB)

References

1

Wu, W. T.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. Q. Glucose- mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing. Angew. Chem. , Int. Ed. 2010, 49, 6554-6558.

2

Pandey, A.; Tripathi, P.; Pandey, R.; Srivatava, R.; Goswami, S. Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied. Sci. 2011, 3, 504-512.

3

Zimmet, P.; Alberti, K. G. M. M.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782-787.

4

Xiao, J. Y.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. J. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 2019, 91, 14803-14807.

5

Zhao, Y. Y.; Yang, J.; Shan, G. Y.; Liu, Z. Y.; Cui, A. N.; Wang, A. L.; Chen, Y. W.; Liu, Y. C. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. Sens. Actuators B Chem. 2020, 305, 127420.

6

Ma, C. B.; Zhang, Y.; Liu, Q.; Du, Y.; Wang, E. K. Enhanced stability of enzyme immobilized in rationally designed amphiphilic aerogel and its application for sensitive glucose detection. Anal. Chem. 2020, 92, 5319-5328.

7

Du, P. Y.; Niu, Q. X.; Chen, J.; Chen, Y.; Zhao, J.; Lu, X Q. "Switch- on" fluorescence detection of glucose with high specificity and sensitivity based on silver nanoparticles supported on porphyrin metal-organic frameworks. Anal. Chem. 2020, 92, 7980-7986.

8

Wang, X. Y.; Qin, L.; Lin, M. J.; Xing, H.; Wei, H. Fluorescent graphitic carbon nitride-based nanozymes with peroxidase-like activities for ratiometric biosensing. Anal. Chem. 2019, 91, 10648-10656.

9

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558-5566.

10

Jeong, J. W.; Arnob, M. M.; Baek, K. M.; Lee, S. Y.; Shih, W. C.; Jung, Y. S. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater. 2016, 28, 8695-8704.

11

Chaichi, M. J.; Ehsani, M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system. Sens. Actuators B Chem. 2016, 223, 713-722.

12

Shi, W. B.; Zhang, X. D.; He, S. H.; Huang, Y. M. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun. 2011, 47, 10785- 10787.

13

Fu, S. F.; Zhu, C. Z.; Song, J. H.; Engelhard, M.; Xia, H. B.; Du, D.; Lin, Y. H. PdCuPt nanocrystals with multibranches for enzyme-free glucose detection. ACS Appl. Mater. Interfaces 2016, 8, 22196- 22200.

14

Zhu, J. L.; Peng, X.; Nie, W.; Wang, Y. J.; Gao, J. W.; Wen, W.; Selvaraj, J. N.; Zhang, X. H.; Wang, S. F. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens. Bioelectron. 2019, 141, 111450.

15

Xia, Y. S.; Ye, J. J.; Tan, K. H.; Wang, J. J.; Yang, G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal. Chem. 2013, 85, 6241-6247.

16

Jin, L. H.; Meng, Z.; Zhang, Y. Q.; Cai, S. J.; Zhang, Z. H.; Li, C.; Shang, L.; Shen, Y. H. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 2017, 9, 10027-10033.

17

Cheng, X. W.; Huang, L.; Yang, X. Y.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/Zeolite Y nanocomposite. J. Colloid. Interface Sci. 2019, 535, 425-435.

18

Lou, Z. P.; Zhao, S.; Wang, Q.; Wei, H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chem. 2019, 91, 15267-15274.

19

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. , Int. Ed. 2004, 43, 2334-2375.

20

Kim, C. R.; Uemura, T.; Kitagawa, S. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev. 2016, 45, 3828-3845.

21

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.

22

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.

23

Chen, Z. L.; Xu, H. B.; Ha, Y.; Li, X. Y.; Liu, M.; Wu, R. B. Two- dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl. Catal. B Environ. 2019, 250, 213-223.

24

Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal-organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170-8175.

25

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

26

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z.; Mai, L. Q. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142-3186.

27

Xu, C. P.; Fang, R. Q; Luque, R.; Chen, L. Y.; Li, Y. W. Functional metal-organic frameworks for catalytic applications. Coordin. Chem. Rev. 2019, 388, 268-292.

28

Chen, H. Y.; Qiu, Q. M.; Sharif, S.; Ying, S. N.; Wang, Y. X.; Ying, Y. B. Solution-phase synthesis of platinum nanoparticle-decorated metal- organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl. Mater. Interfaces 2018, 10, 24108-24115.

29

Qiu, N.; Liu, Y.; Guo, R. Electrodeposition-assisted rapid preparation of Pt nanocluster/3D graphene hybrid nanozymes with outstanding multiple oxidase-like activity for distinguishing colorimetric determination of dihydroxybenzene isomers. ACS Appl. Mater. Interfaces 2020, 12, 15553-15561.

30

Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size- controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261-15267.

31

Yang, B. W.; Ding, L.; Yao, H. L.; Chen, Y.; Shi, J. L. A metal-organic framework (MOF) fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv. Mater. 2020, 32, 1907152.

32

André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501-509.

33

Zhang, H. J.; Han, L.; Li, F. A universal one-pot assay strategy based on bio-inorganic cascade catalysts for different analytes by changing pH-dependent activity of enzymes on enzyme mimics. Sens. Actuators B Chem. 2019, 286, 460-467.

34

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

35

Qu, K. G.; Shi, P.; Ren, J. S.; Qu, X. G. Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chem. Eur. J. 2014, 20, 7501-7506.

36

Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097-1104.

37

Nagvenkar, A. P.; Gedanken, A. Cu0.89Zn0.11O, a new peroxidase- mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces 2016, 8, 22301-22308.

38

Sun, L. F.; Ding, Y. Y.; Jiang, Y. L.; Liu, Q. Y. Montmorillonite- loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators B Chem. 2017, 239, 848-856.

39

Zhao, Z. H.; Huang, Y. J.; Liu, W. R.; Ye, F. G.; Zhao, S. L. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection. ACS Sustainable Chem. Eng. 2020, 8, 4481-4488.

40

Li, T.; Hu, P.; Li, J. W.; Huang, P. T.; Tong, W. J.; Gao, C. Y. Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf. A Physicochem. Eng. Aspects 2019, 577, 456-463.

41

Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001-4012.

42

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase- like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.

43

Reyhani, A.; Nothling, M. D.; Ranji-Burachaloo, H.; McKenzie, T. G.; Fu, Q.; Tan, S.; Bryant, G.; Qiao, G. G. Blood-catalyzed RAFT polymerization. Angew. Chem. , Int. Ed. 2018, 57, 10288-10292.

44

Gao, C.; Chen, S.; Quan, X.; Yu, H. T.; Zhang, Y. B. Enhanced fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J. Catal. 2017, 356, 125-132.

45

Georgi, A.; Polo, M. V.; Crincoli, K.; Mackenzie, K.; Kopinke, F. D. Accelerated catalytic fenton reaction with traces of iron: An Fe-Pd-multicatalysis approach. Environ. Sci. Technol. 2016, 50, 5882-5891.

46

Lin, S. S.; Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417-1423.

47

Raja, D. S.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF- based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065.

48

Yuan, S.; Bo, X. J.; Guo, L. P. In-situ growth of iron-based metal- organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p-Nitrotoluene and hydrazine. Anal. Chim. Acta. 2018, 1024, 73-83.

49

Gomes, A.; Fernandes, E.; Lima, J. L. F. C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45-80.

50

Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006, 386, 532-543.

51

Ji, X. Y.; Su, Z. G.; Wang, P.; Ma, G. H.; Zhang, S. P. "Ready-to-use" hollow nanofiber membrane-based glucose testing strips. Analyst 2014, 139, 6467-6473.

52

Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359-1372.

Nano Research
Pages 4689-4695
Cite this article:
Li J, Zhao J, Li S, et al. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal–organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Research, 2021, 14(12): 4689-4695. https://doi.org/10.1007/s12274-021-3406-z
Topics:

1136

Views

73

Crossref

72

Web of Science

73

Scopus

4

CSCD

Altmetrics

Received: 17 December 2020
Revised: 03 February 2021
Accepted: 20 February 2021
Published: 27 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return