AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets

Jian Yang1,2Liang Chu1( )Ruiyuan Hu1Wei Liu1Nanjing Liu1Yuhui Ma1Waqar Ahmad3Xing’ao Li1( )
Institute of Advanced Materials & New Energy Technology Engineering Laboratory of Jiangsu Province & School of Materials Science and Engineering & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
Department of Physics, Government College Women University, Kutchery Road, Sialkot 51310, Pakistan
Show Author Information

Graphical Abstract

Abstract

Enhancement of open-circuit voltage (Voc) is an effective way to improve power conversion efficiency (PCE) of the perovskite solar cells (PSCs). Theoretically, work function engineering of TiO2 electron transport layer can reduce both the loss of Voc and current hysteresis in PSCs. In this work, two-dimensional g-C3N4 nanosheets were adopted to modify the compact TiO2 layers in planar PSCs, which can finely tune the work function (WF) and further improve the energy level alignment at the interface to enhance the Voc and diminish the hysteresis. Meanwhile, the quality of perovskite films and charge transfer of the devices were improved by g-C3N4 nanosheets. Therefore, the PCE of the planar PSCs was champed to 19.55% without obvious hysteresis compared with the initial 15.81%, mainly owing to the remarkable improvement of VOC from 1.01 to 1.11 V. In addition, the stability of the devices was obviously improved. The results demonstrate an effective strategy of WF engineering to enhance Voc and diminish hysteresis phenomenon for improving the performance of PSCs.

Electronic Supplementary Material

Download File(s)
12274_2021_3408_MOESM1_ESM.pdf (1.4 MB)

References

[1]
Dong, R.; Fang, Y. J.; Chae, J.; Dai, J.; Xiao, Z. G.; Dong, Q. F.; Yuan, Y. B.; Centrone, A.; Zeng, X. C.; Huang, J. S. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 2015, 27, 1912-1918.
[2]
Jiang, M. C.; Yuan, J. F.; Cao, G. Z.; Tian, J. J. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem. Eng. J. 2020, 402, 126152.
[3]
Wei, J.; Wang, X.; Sun, X. Y.; Yang, Z. F.; Moreels, I.; Xu, K.; Li, H. B. Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Res. 2020, 13, 684-690.
[4]
Chen, C.; Li, H.; Jin, J. J.; Cheng, Y.; Liu, D. L.; Song, H. W.; Dai, Q. L. Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer. Nano Energy 2017, 32, 165-173.
[5]
Li, H.; Chen, C.; Jin, J. J.; Bi, W. B.; Zhang, B. X.; Chen, X.; Xu, L.; Liu, D. L.; Dai, Q. L.; Song, H. W. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells. Nano Energy 2018, 50, 699-709.
[6]
Chen, H.; Ye, F.; Tang, W. T.; He, J. J.; Yin, M. S.; Wang, Y. B.; Xie, F. X.; Bi, E. B.; Yang, X. D.; Grätzel, M. et al. A solvent- and vacuum- free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92-95.
[7]
Ko, H. S.; Lee, J. W.; Park, N. G. 15.76% efficiency perovskite solar cells prepared under high relative humidity: Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 2015, 3, 8808-8815.
[8]
Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
[9]
Zardetto, V.; Di Giacomo, F.; Lifka, H.; Verheijen, M. A.; Weijtens, C. H. L.; Black, L. E.; Veenstra, S.; Kessels, W. M. M.; Andriessen, R.; Creatore, M. Surface fluorination of ALD TiO2 electron transport layer for efficient planar perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1701456.
[10]
Song, S.; Hörantner, M. T.; Choi, K.; Snaith, H. J.; Park, T. Inducing swift nucleation morphology control for efficient planar perovskite solar cells by hot-air quenching. J. Mater. Chem. A 2017, 5, 3812-3818.
[11]
Han, T. H.; Tan, S.; Xue, J. J.; Meng, L.; Lee, J. W.; Yang, Y. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 2019, 31, 1803515.
[12]
Agresti, A.; Pazniak, A.; Pescetelli, S.; Di Vito, A.; Rossi, D.; Pecchia, A.; Der Maur, M. A.; Liedl, A.; Larciprete, R.; Kuznetsov, D. V. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 2019, 18, 1228-1234.
[13]
Cojocaru, L.; Uchida, S.; Jayaweera, P. V. V.; Kaneko, S.; Wang, H. B.; Nakazaki, J.; Kubo, T.; Segawa, H. Effect of TiO2 surface treatment on the current-voltage hysteresis of planar-structure perovskite solar cells prepared on rough and flat fluorine-doped tin oxide substrates. Energy. Technol. 2017, 5, 1762-1766.
[14]
Qiu, L. B.; Ono, L. K.; Jiang, Y.; Leyden, M. R.; Raga, S. R.; Wang, S. H.; Qi, Y. B. Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells. J. Phys. Chem. B 2018, 122, 511-520.
[15]
Byranvand, M. M.; Kim, T.; Song, S.; Kang, G.; Ryu, S. U.; Park, T. p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv. Energy Mater. 2018, 8, 1702235.
[16]
Tavakoli, M. M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 2018, 8, 1800794.
[17]
Bouhjar, F.; Derbali, L.; Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO: Co electron transport layer. Nano Res. 2020, 13, 2546-2555.
[18]
Pan, H.; Zhao, X. J.; Gong, X.; Li, H.; Ladi, N. H.; Zhang, X. L.; Huang, W. C.; Ahmad, S.; Ding, L. M.; Shen, Y. et al. Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Mater. Horiz. 2020, 7, 2276-2291.
[19]
Zhang, R.; Liu, W.; Hu, R. Y.; Ma, Y. H.; Sun, Y.; Zhang, J.; Pu, Y.; Yang, J. P.; Chu, L.; Li, X. A. Enhancing perovskite quality and energy level alignment of TiO2 nanorod arrays-based solar cells via interfacial modification. Sol. Energy Mater. Sol. Cells 2019, 191, 183-189.
[20]
Han, G. S.; Chung, H. S.; Kim, B. J.; Kim, D. H.; Lee, J. W.; Swain, B. S.; Mahmood, K.; Yoo, J. S.; Park, N. G.; Lee, J. H. et al. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J. Mater. Chem. A 2015, 3, 9160-9164.
[21]
Liu, G.; Yang, B. C.; Chen, H.; Zhao, Y.; Xie, H. P.; Yuan, Y. B.; Gao, Y. L.; Zhou, C. H. In situ surface modification of TiO2 by CaTiO3 to improve the UV stability and power conversion efficiency of perovskite solar cells. Appl. Phys. Lett. 2019, 115, 213501.
[22]
Bera, A.; Wu, K. W.; Sheikh, A.; Alarousu, E.; Mohammed, O. F.; Wu, T. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 2014, 118, 28494-28501.
[23]
Wojciechowski, K.; Stranks, S. D.; Abate, A.; Sadoughi, G.; Sadhanala, A.; Kopidakis, N.; Rumbles, G.; Li, C. Z.; Friend, R.; Jen, A. K. Y. et al. Heterojunction modification for highly efficient organic- inorganic perovskite solar cells. ACS Nano 2014, 8, 12701-12709.
[24]
Wang, A. W.; Wang, C. D.; Fu, L.; Wong-Ng, W.; Lan, Y. C. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 2017, 9, 47.
[25]
Ma, T. Y.; Tang, Y. H.; Dai, S.; Qiao, S. Z. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: An excellent metal-/label-free biosensing platform. Small 2014, 10, 2382-2389.
[26]
Niu, X. H.; Yi, Y. W.; Bai, X. W.; Zhang, J.; Zhou, Z. B.; Chu, L.; Yang, J. P.; Li, X. A. Photocatalytic performance of few-layer graphitic C3N4: Enhanced by interlayer coupling. Nanoscale 2019, 11, 4101-4107.
[27]
Jia, C. C.; Yang, L. J.; Zhang, Y. Z.; Zhang, X.; Xiao, K.; Xu, J. S.; Liu, J. Graphitic carbon nitride films: Emerging paradigm for versatile applications. ACS Appl. Mater. Interfaces 2020, 12, 53571-53591.
[28]
Vágner, P.; Kodým, R.; Bouzek, K. Thermodynamic analysis of high temperature steam and carbon dioxide systems in solid oxide cells. Sustainable Energy Fuels 2019, 3, 2076-2086.
[29]
Lu, D. Z.; Wang, H. M.; Zhao, X. N.; Kondamareddy, K. K.; Ding, J. Q.; Li, C. H.; Fang, P. F. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustainable Chem. Eng. 2017, 5, 1436-1445.
[30]
Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.
[31]
Chen, J. B.; Dong, H.; Zhang, L.; Li, J. R.; Jia, F. H.; Jiao, B.; Xu, J.; Hou, X.; Liu, J.; Wu, Z. X. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%. J. Mater. Chem. A 2020, 8, 2644-2653.
[32]
Liu, P.; Sun, Y.; Wang, S. F.; Zhang, H. J.; Gong, Y. N.; Li, F. J.; Shi, Y. F.; Du, Y. X.; Li, X. F.; Guo, S. S. et al. Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. J. Power Sources 2020, 451, 227825.
[33]
Jiang, L. L.; Wang, Z. K.; Li, M.; Zhang, C. C.; Ye, Q. Q.; Hu, K. H.; Lu, D. Z.; Fang, P. F.; Liao, L. S. Passivated perovskite crystallization via g-C3N4 for high-performance solar cells. Adv. Funct. Mater. 2018, 28, 1705875.
[34]
Li, Z.; Wu, S. F.; Zhang, J.; Yuan, Y. F.; Wang, Z. L.; Zhu, Z. L. Improving photovoltaic performance using perovskite/surface-modified graphitic carbon nitride heterojunction. Solar RRL 2020, 4, 1900413.
[35]
Hao, J. G.; Zhang, S. F.; Ren, F.; Wang, Z. W.; Lei, J. F.; Wang, X. N.; Cheng, T.; Li, L. B. Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J. Colloid Interface Sci. 2017, 508, 419-425.
[36]
Zohar, A.; Kulbak, M.; Levine, I.; Hodes, G.; Kahn, A.; Cahen, D. What limits the open-circuit voltage of bromide perovskite-based solar cells? ACS Energy Lett. 2019, 4, 1-7.
[37]
Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging chemical functionalization of g-C3N4: Covalent/noncovalent modifications and applications. ACS Nano 2020, 14, 12390-12469.
[38]
Xie, L. S.; Cao, Z. Y.; Wang, J. W.; Wang, A. L.; Wang, S. R.; Cui, Y. Y.; Xiang, Y.; Niu, X. B.; Hao, F.; Ding, L. M. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy 2020, 74, 104846.
[39]
Zhang, C. X.; Luo, Y. D.; Chen, X. D.; Chen, Y. W.; Sun, Z.; Huang, S. M. Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 2016, 8, 347-357.
[40]
Chen, L. J.; Lee, C. R.; Chuang, Y. J.; Wu, Z. H.; Chen, C. Y. Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. J. Phys. Chem. Lett. 2016, 7, 5028-5035.
[41]
Niu, T. Q.; Lu, J.; Munir, R.; Li, J. B.; Barrit, D.; Zhang, X.; Hu, H. L.; Yang, Z.; Amassian, A.; Zhao, K. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 2018, 30, 1706576.
[42]
Haruyama, J.; Sodeyama, K.; Han, L. Y.; Tateyama, Y. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 2903-2909.
[43]
Wang, B. H.; Wong, K. Y.; Yang, S. F.; Chen, T. Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells. J. Mater. Chem. A 2016, 4, 3806-3812.
[44]
Boopathi, K. M.; Mohan, R.; Huang, T. Y.; Budiawan, W.; Lin, M. Y.; Lee, C. H.; Ho, K. C.; Chu, C. W. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 2016, 4, 1591-1597.
[45]
Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2020, .
[46]
Li, X. M.; Wang, K. L.; Lgbari, F.; Dong, C.; Yang, W. F.; Ma, C.; Ma, H.; Wang, Z. K.; Liao, L. S. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Res. 2020, 13, 2203-2208.
[47]
Ouafi, M.; Jaber, B.; Atourki, L.; Bekkari, R.; Laânab, L. Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. J. Alloys Compd. 2018, 746, 391-398.
[48]
Ma, Y. L.; Deng, K. M.; Gu, B. K.; Cao, F. R.; Lu, H.; Zhang, Y. X.; Li, L. Boosting efficiency and stability of perovskite solar cells with CdS inserted at TiO2/Perovskite interface. Adv. Mater. Interfaces 2016, 3, 1600729.
[49]
Zhao, X. J.; Tao, L. M.; Li, H.; Huang, W. C.; Sun, P. Y.; Liu, J.; Liu, S. S.; Sun, Q.; Cui, Z. F.; Sun, L. J. et al. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 2018, 18, 2442-2449.
[50]
Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shin, H. W.; Ahn, T. K.; Wolf, C.; Lee, T. W. et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 2015, 27, 3424-3430.
[51]
Kang, D. H.; Park, N. G. On the current-voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 2019, 31, 1805214.
[52]
Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255-275.
[53]
Liu, H.; Siron, M.; Gao, M. Y.; Lu, D. L.; Bekenstein, Y.; Zhang, D. D.; Dou, L. T.; Alivisatos, A. P.; Yang, P. D. Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453-1458.
Nano Research
Pages 2139-2144
Cite this article:
Yang J, Chu L, Hu R, et al. Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets. Nano Research, 2021, 14(7): 2139-2144. https://doi.org/10.1007/s12274-021-3408-x
Topics:

792

Views

12

Crossref

11

Web of Science

13

Scopus

2

CSCD

Altmetrics

Received: 23 December 2020
Revised: 15 February 2021
Accepted: 18 February 2021
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return