AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111)

Jinping Hu1,2Zhaofeng Liang3Kongchao Shen1,4Lei Xie3Huan Zhang1,2Chaoqin Huang1,2Yaobo Huang1,2,3Han Huang5Jianxin Tang4Zheng Jiang1,2,3Miao Yu6Fei Song1,2,3( )
Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201000 China
University of Chinese Academy of Sciences Beijing 100100 China
Shanghai Synchrotron Radiation Faciality Zhangjiang Laboratory Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201000 China
Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
School of Physics Science and Electronics Central South University Changsha 410083 China
State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
Show Author Information

Graphical Abstract

Abstract

On-surface Ullmann coupling has been intensely utilized for the tailor-made fabrication of conjugated frameworks towards molecular electronics, however, reaction mechanisms are still limitedly understood. Herein, we provide a comprehensive elucidation of the surface Ullmann coupling of 2, 7-dibromopyrene (Br2Py) on Ag(111) by scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density function theory (DFT), and reveal that the Ullmann reaction path is unique regardless of predesigned assembled structures. By manipulating deposition conditions, diverse assembled architectures have been constructed for Br2Py on Ag(111), including the ladder phase, parallel arrangement, hexagonal patterns from monomers or Kagome lattices based on organometallic (OM) dimers. Intriguingly, stepwise annealing leads to an identical reaction diagram for the surface Ullmann coupling from individual assembled structures convergent into the brick-wall-pattern OM dimers first, which is deemed to be a stable phase, and then into elongated OM chains in order and eventually long-range polymers with direct C–C coupling. While the reaction mechanism is demonstrated to be dominated by the metal coordinated and halogen bonding motifs, interestingly, it has also been revealed that surface adatoms and dissociated Br atoms play a crucial role in coupling reactions. In contrast to previous reports demonstrating the manipulation of Ullmann reactions by preassembled strategy, herein, weak intermolecular interaction in assembled nanostructures is immediately suppressed by strong covalent bonding during reactions. Importantly, our report proposes essential insights on fundamental understanding of surface Ullmann coupling towards high-yield surface synthesis.

Electronic Supplementary Material

Download File(s)
12274_2021_3409_MOESM1_ESM.pdf (1.2 MB)

References

1

Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35.

2

Song, F.; Wells, J. W.; Handrup, K.; Li, Z. S.; Bao, S. N.; Schulte, K.; Ahola-Tuomi, M.; Mayor, L. C.; Swarbrick, J. C.; Perkins, E. W. et al. Direct measurement of electrical conductance through a self- assembled molecular layer. Nat. Nanotechnol. 2009, 4, 373–376.

3

Heath, J. R.; Ratner, M. A. Molecular electronics. Phys. Today 2003, 56, 43–49.

4

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

5

Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. , Int. Ed. 2008, 47, 6950–6953.

6

Gröning, O, Wang, S. Y.; Yao, X. L.; Pignedoli, C. A.; Barin, B. G.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X. L.; Narita, A. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 2018, 560, 209–213.

7

Grill, L; Hecht, S. Covalent on-surface polymerization. Nat. Chem. 2020, 12, 115–130.

8

Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 2012, 3, 1286.

9

Treier, M.; Pignedoli, C. A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 2011, 3, 61–67.

10

Zhang, R.; Lyu, G. Q.; Li, D. Y.; Liu, P. N.; Lin, N. Template-controlled Sonogashira cross-coupling reactions on a Au(111) surface. Chem. Commun. 2017, 53, 1731–1734.

11

Li, Q.; Yang, B.; Lin, H. P.; Aghdassi, N.; Miao, K. J.; Zhang, J. J.; Zhang, H. M.; Li, Y. Y.; Duhm, S.; Fan, J. et al. Surface-controlled Mono/Diselective ortho C–H bond activation. J. Am. Chem. Soc. 2016, 138, 2809–2814.

12

Sun, Q.; Cai, L. L.; Wang, S. Y.; Widmer, R.; Ju, H. X.; Zhu, J. F.; Li, L.; He, Y. B.; Ruffieux, P.; Fasel, R. et al. Bottom-Up synthesis of metalated carbyne. J. Am. Chem. Soc. 2016, 138, 1106–1109.

13

Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687–691.

14

Fan, Q. T.; Gottfried, J. M.; Zhu, J. F. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon- based nanostructures. Acc. Chem. Res. 2015, 48, 2484–2494.

15

Clair, S; de Oteyza D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem. Rev. 2019, 119, 4717–4776.

16

Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 2009, 5, 592.

17

Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J. M.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M. et al. Two-dimensional polymer formation on surfaces: Insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 2010, 132, 16669–16672.

18

Zhou, X.; Wang, C. G.; Zhang, Y. J.; Cheng, F.; He, Y.; Shen, Q.; Shang, J.; Shao, X.; Ji, W.; Chen, W. et al. Steering surface reaction dynamics with a self-assembly strategy: Ullmann coupling on metal surfaces. Angew. Chem. , Int. Ed. 2017, 56, 12852–12856.

19

Zhong, D. Y.; Franke, J. H.; Podiyanachari, S. K.; Blömker, T.; Zhang, H. M.; Kehr, G.; Erker, G.; Fuchs, H.; Chi, L. F. Linear alkane polymerization on a gold surface. Science 2011, 334, 213–216.

20

Dong, L.; Liu, P. N.; Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 2015, 48, 2765–2774.

21

Fritton, M.; Duncan, D. A.; Deimel, P. S.; Rastgoo-Lahrood, A.; Allegretti, F.; Barth, J. V.; Heckl, W. M.; Björk, J.; Lackinger, M. The role of kinetics versus thermodynamics in surface-assisted Ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019, 141, 4824–4832.

22

Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Svirskiy, G. I.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Taketsugu, T. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): Critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 2015, 9, 8997–9011.

23

Peyrot, D.; Silly, F. On-surface synthesis of two-dimensional covalent organic structures versus halogen-bonded self-assembly: Competing formation of organic nanoarchitectures. ACS Nano 2016, 10, 5490–5498.

24

Li, D. Y.; Li, S. W.; Xie, Y. L.; Hua, X.; Long, Y. T.; Wang, A.; Liu, P. N. On-surface synthesis of planar dendrimers via divergent cross- coupling reaction. Nat. Commun. 2019, 10, 2414.

25

Zhou, X.; Dai, J. X.; Wu, K. Steering on-surface reactions with self-assembly strategy. Phys. Chem. Chem. Phys. 2017, 19, 31531–31539.

26

Lu, H.; E, W. L.; Cai, L. L.; Ma, Z. B.; Xu, W.; Yang, X. M. Dissymmetric On-surface dehalogenation reaction steered by preformed self-assembled structure. J. Phys. Chem. Lett. 2020, 11, 1867–1872.

27

Stolz, S.; Di Giovannantonio, M.; Urgel, J. I.; Sun, Q.; Kinikar, A.; Barin, G. B.; Bommert, M.; Fasel, R.; Widmer, R. Reversible dehalogenation in on-surface aryl-aryl coupling. Angew. Chem. , Int. Ed. 2020, 59, 14106–14110.

28

Hu, J. B.; Hu, J. P.; Zhang, Z. D.; Shen, K. C.; Liang, Z. F.; Zhang, H.; Tian, Q. W.; Wang, P.; Jiang, Z.; Huang, H. et al. Ullmann coupling of 2, 7-dibromopyrene on Au(111) assisted by surface adatoms. Appl. Surf. Sci. 2020, 513, 145797.

29

Kiraly, B.; Iski, E. V.; Mannix, A. J.; Fisher, B. L.; Hersam, M. C.; Guisinger, N. P. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat. Commun. 2013, 4, 2804.

30

Liu, J.; Chen, Q. W.; Cai, K.; Li, J.; Li, Y. R.; Yang, X.; Zhang, Y. J.; Wang, Y. F.; Tang, H.; Zhao, D. H. et al. Stepwise on-surface dissymmetric reaction to construct binodal organometallic network. Nat. Commun. 2019, 10, 2545.

31

Fan, Q. T.; Liu, L. M.; Dai, J. Y.; Wang, T.; Ju, H. X.; Zhao, J.; Kuttner, J.; Hilt, G.; Gottfried, J. M.; Zhu, J. F. Surface adatom mediated structural transformation in bromoarene monolayers: Precursor phases in surface Ullmann reaction. ACS Nano 2018, 12, 2267–2274.

32

Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. On-surface Ullmann polymerization via intermediate organometallic networks on Ag(111). Chem. Commun. 2014, 50, 7680–7682.

33

Hu, J. B.; Shen, K. C.; Hu, J. P.; Sun, H. L.; Tian, Q. W.; Liang, Z. F.; Huang, H.; Jiang, Z.; Wells, J. W.; Song, F. Structural Transformation of 2, 7-Dibromopyrene on Au(111) Mediated by Halogen-Bonding Motifs. ChemPhysChem 2019, 20, 2376–2381.

34

Chung, K. H.; Koo, B. G.; Kim, H.; Yoon, J. K.; Kim, J. H.; Kwon, Y. K.; Kahng, S. J. Electronic structures of one-dimensional metal- molecule hybrid chains studied using scanning tunneling microscopy and density functional theory. Phys. Chem. Chem. Phys. 2012, 14, 7304–7308.

35

Pham, T. A.; Song, F.; Nguyen, M. T.; Li, Z. S.; Studener, F.; Stöhr, M. Comparing Ullmann coupling on noble metal surfaces: On-surface polymerization of 1, 3, 6, 8-tetrabromopyrene on Cu (111) and Au (111). Chem. —Eur. J. 2016, 22, 5937–5944.

36

Liu, J.; Chen, Q. W.; He, Q. L.; Zhang, Y. J.; Fu, X. Y.; Wang, Y. F.; Zhao, D. H.; Chen, W.; Xu, G. Q.; Wu, K. Bromine adatom promoted C–H bond activation in terminal alkynes at room temperature on Ag(111). Phys. Chem. Chem. Phys. 2018, 20, 11081–11088.

37

Zhang, Y. Q.; Paszkiewicz, M.; Du, P.; Zhang, L. D.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V. et al. Complex Supramolecular Interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem. 2018, 10, 296–304.

38

Cheng, F.; Wu, X. J.; Hu, Z. X.; Lu, X. F.; Ding, Z. J.; Shao, Y.; Xu, H.; Ji, W.; Wu, J. S.; Loh, K. P. Two-dimensional tessellation by molecular tiles constructed from halogen-halogen and halogen-metal networks. Nat. Commun. 2018, 9, 4871.

39

Han, D.; Fan, Q. T.; Dai, J. Y.; Wang, T.; Huang, J. M.; Xu, Q.; Ding, H. H.; Hu, J.; Feng, L.; Zhang, W. Z. et al. On-surface synthesis of armchair-edged graphene nanoribbons with zigzag topology. J. Phys. Chem. C 2020, 124, 5248–5256.

40

Antczak, G.; Kamiński, W.; Morgenstern, K. Stabilizing CuPc coordination networks on Ag(100) by Ag atoms. J. Phys. Chem. C 2015, 119, 1442–1450.

41

Dong, L.; Sun, Q.; Zhang, C.; Li, Z. W.; Sheng, K.; Kong, H. H.; Tan, Q. G.; Pan, Y. X.; Hu, A. G.; Xu, W. A self-assembled molecular nanostructure for trapping the native adatoms on Cu(110). Chem. Commun. 2013, 49, 1735–1737.

42

Dyer, M. S.; Robin, A.; Haq, S.; Raval, R.; Persson, M.; Klimeš, J. Understanding the interaction of the porphyrin macrocycle to reactive metal substrates: Structure, bonding, and adatom capture. ACS Nano 2011, 5, 1831–1838.

43

Pivetta, M.; Pacchioni, G. E.; Fernandes, E.; Brune, H. Temperature- dependent self-assembly of NC-Ph5-CN molecules on Cu(111). J. Chem. Phys. 2015, 142, 101928.

44

Yang, B.; Cao, N.; Ju, H. X.; Lin, H. P.; Li, Y. Y.; Ding, H. H.; Ding, J. Q.; Zhang, J. J.; Peng, C. C.; Zhang, H. M. et al. Intermediate states directed chiral transfer on a silver surface. J. Am. Chem. Soc. 2019, 141, 168–174.

45

Wang, T.; Fan, Q. T.; Feng, L.; Tao, Z. J.; Huang, J. M.; Ju, H. X.; Xu, Q.; Hu, S. W.; Zhu, J. F. Chiral Kagome lattices from on-surface synthesized molecules. ChemPhysChem 2017, 18, 3329–3333.

46

Kawai, S.; Sadeghi, A.; Okamoto, T.; Mitsui, C.; Pawlak, R.; Meier, T.; Takeya, J.; Goedecker, S.; Meyer, E. Organometallic bonding in an Ullmann-type on-surface chemical reaction studied by high-resolution atomic force microscopy. Small 2016, 12, 5303–5311.

47

Zint, S.; Ebeling, D.; Schlöder, T.; Ahles, S.; Mollenhauer, D.; Wegner, H. A.; Schirmeisen, A. Imaging successive intermediate states of the on-surface Ullmann reaction on Cu(111): Role of the metal coordination. ACS Nano 2017, 11, 4183–4190.

48

Yang, Z. C.; Fromm, L.; Sander, T.; Gebhardt, J.; Schaub, T. A.; Görling, A.; Kivala, M.; Maier, S. On-surface assembly of hydrogen- and halogen-bonded supramolecular graphyne-like networks. Angew. Chem. , Int. Ed. 2020, 59, 9549–9555.

49

Galeotti, G.; Di Giovannantonio, M.; Cupo, A.; Xing, S.; Lipton- Duffin, J.; Ebrahimi, M.; Vasseur, G.; Kierren, B.; Fagot-Revurat, Y.; Tristant, D. et al. An unexpected organometallic intermediate in surface-confined Ullmann coupling. Nanoscale 2019, 11, 7682–7689.

50

Chen, M.; Röckert, M.; Xiao, J.; Drescher, H. J.; Steinrück, H. P.; Lytken, O.; Gottfried, J. M. Coordination reactions and layer exchange processes at a buried metal-organic interface. J. Phys. Chem. C. 2014, 118, 8501–8507.

51

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

52

Shen, K. C.; Sun, H. L.; Hu, J. P.; Hu, J. B.; Liang, Z. F.; Li, H. Y.; Zhu, Z. Y.; Huang, Y. B.; Kong, L. Y.; Wang, Y. et al. Fabricating quasi-free-standing graphene on a SiC(0001) surface by steerable intercalation of iron. J. Phys. Chem. C. 2018, 122, 21484–21492.

53

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

54

Liang, Z. F.; Wang, Y.; Hua, C. Q.; Xiao, C. C.; Chen, M. G.; Jiang, Z.; Tai, R. Z.; Lu, Y. H.; Song, F. Electronic structures of ultra-thin tellurium nanoribbons. Nanoscale 2019, 11, 14134–14140.

55

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

56

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

57

Xu, S. G.; Zhao, Y. J.; Liao, J. H.; Yang, X. B.; Xu, H. The nucleation and growth of borophene on the Ag (111) surface. Nano Res 2016, 9, 2616–2622.

Nano Research
Pages 4704-4713
Cite this article:
Hu J, Liang Z, Shen K, et al. Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Research, 2021, 14(12): 4704-4713. https://doi.org/10.1007/s12274-021-3409-9
Topics:

785

Views

24

Crossref

22

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 26 December 2020
Revised: 18 February 2021
Accepted: 21 February 2021
Published: 08 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return