AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unprecedently low thermal conductivity of unique tellurium nanoribbons

Xiangshui Wu1,§Qiqi Tao2,§Da Li1Qilang Wang1Xiaoyan Zhang2Huile Jin2Jun Li2Shun Wang2( )Xiangfan Xu1( )
Center for Phononics and Thermal Energy Science China-EU Joint Center for Nanophononics School of Physics Science and EngineeringTongji University Shanghai 200092 China
College of Chemistry and Materials Engineering Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou 325035 China

§Xiangshui Wu and Qiqi Tao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Tellurene, probably one of the most promising two-dimensional (2D) system in the thermoelectric materials, displays ultra-low thermal conductivity. However, a linear thickness-dependent thermal conductivity of unique tellurium nanoribbons in this study reveals that unprecedently low thermal conductivity can be achieved via well-defined nanostructures of low-dimensional tellurium instead of pursuing dimension-reduced 2D tellurene. For thinnest tellurium nanoribbon with thickness of 144 nm, the thermal conductivity is only ~1.88 ± 0.22 W·m−1·K−1 at room temperature. It's a dramatic decrease (45%), compared with the well-annealed high-purity bulk tellurium. To be more specific, an expected thermal conductivity of tellurium nanoribbons is even lower than that of 2D tellurene, as a result of strong phonon-surface scattering. We have faith in low-dimensional tellurium in which the thermoelectric performance could realize further breakthrough.

Electronic Supplementary Material

Download File(s)
12274_2021_3414_MOESM1_ESM.pdf (2.7 MB)

References

1

Davidson, D. J. Exnovating for a renewable energy transition. Nat. Energy 2019, 4, 254-256.

2

Xiao, Y.; Zhao, L. D. Seeking new, highly effective thermoelectrics. Science 2020, 367, 1196-1197.

3

Jin, H. L.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P. C.; Yang, C.; Li, N.; Liu, Z. P.; He, H., Jr.; Zhu, T. J. et al. Hybrid organic-inorganic thermoelectric materials and devices. Angew. Chem., Int. Ed. 2019, 58, 15206-15226.

4

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655-2694.

5

Sales, B. C. Electron crystals and phonon glasses: A new path to improved thermoelectric materials. MRS Bull. 1998, 23, 15-21.

6

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-377.

7

Bathula, S.; Jayasimhadri, M.; Singh, N.; Srivastava, A. K.; Pulikkotil, J.; Dhar, A.; Budhani, R. C. Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Appl. Phys. Lett. 2012, 101, 213902.

8

Fu, L. W.; Yin, M. J.; Wu, D.; Li, W.; Feng, D.; Huang, L.; He, J. Q. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy Environ. Sci. 2017, 10, 2030-2040.

9

Lin, S. Q.; Li, W.; Chen, Z. W.; Shen, J. W.; Ge, B. H.; Pei, Y. Z. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 2016, 7, 10287.

10

Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109-114.

11

Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043-1053.

12

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J. H.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471-487.

13

Mao, J.; Liu, Z. H.; Ren, Z. F. Size effect in thermoelectric materials. npj Quant. Mater. 2016, 1, 16028.

14

Zhao, J. L.; Ma, D. T.; Wang, C.; Guo, Z. N.; Zhang, B.; Li, J. Q.; Nie, G. H.; Xie, N.; Zhang, H. Recent advances in anisotropic two- dimensional materials and device applications. Nano Res. 2021, 14, 897-919.

15

Wei, P. C.; Liao, C. N.; Wu, H. J.; Yang, D. W.; He, J.; Biesold- McGee, G. V.; Liang, S.; Yen, W. T.; Tang, X. F.; Yeh, J. W. et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv. Mater. 2020, 32, 1906457.

16

Zhao, L. D.; Dravid, V. P.; Kanatzidis, M. G. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 2014, 7, 251-268.

17

Lan, Y. C.; Minnich, A. J.; Chen, G.; Ren, Z. F. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357-376.

18

Zhang, J.; Wu, D. S.; He, D.; Feng, D.; Yin, M. J.; Qin, X. Y.; He, J. Q. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering. Adv. Mater. 2017, 29, 1703148.

19

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727-12731.

20

Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631-16634.

21

Maire, J.; Anufriev, R.; Nomura, M. Ballistic thermal transport in silicon nanowires. Sci. Rep. 2017, 7, 41794.

22

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard Ⅲ, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168-171.

23

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163- 167.

24

Wu, J.; Chen, Y. B.; Wu, J. Q.; Hippalgaonkar, K. Perspectives on thermoelectricity in layered and 2D materials. Adv. Electron. Mater. 2018, 4, 1800248.

25

Shi, L. Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanoscale Microscale Thermophys. Eng. 2012, 16, 79-116.

26

Liang, Q. J.; Gou, J.; Arramel, Zhang, Q.; Zhang, W. J.; Wee, A. T. S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439-3444.

27

Peng, H.; Kioussis, N.; Snyder, G. J. Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 2014, 89, 195206.

28

Peng, H.; Kioussis, N.; Stewart, D. A. Anisotropic lattice thermal conductivity in chiral tellurium from first principles. Appl. Phys. Lett. 2015, 107, 251904.

29

Qiu, G.; Huang, S.; Segovia, M.; Venuthurumilli, P. K.; Wang, Y.; Wu, W.; Xu, X.; Ye, P. D. Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett. 2019, 19, 1955-1962.

30

Reed, E. J. Two-dimensional tellurium. Nature 2017, 552, 40-41.

31

Sharma, S.; Singh, N.; Schwingenschlögl, U. Two-dimensional tellurene as excellent thermoelectric material. ACS Appl. Energy Mater. 2018, 1, 1950-1954.

32

Gao, Z. B.; Tao, F.; Ren, J. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale 2018, 10, 12997-13003.

33

Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

34

Ho, C. Y.; Powell, R. W.; Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1972, 1, 279-421.

35

Huang, S. Y.; Segovia, M.; Yang, X. L.; Koh, Y. R.; Wang, Y. X.; Ye, P. D.; Wu, W. Z.; Shakouri, A.; Ruan, X. L.; Xu, X. F. Anisotropic thermal conductivity in 2D tellurium. 2D Mater. 2019, 7, 015008.

36

He, Z.; Yang, Y.; Liu, J. W.; Yu, S. H. Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732-2753.

37

Zhong, B. N.; Fei, G. T.; Fu, W. B.; Gong, X. X.; Gao, X. D.; Zhang, L. D. Solvothermal synthesis, stirring-assisted assembly and photoelectric performance of Te nanowires. Phys. Chem. Chem. Phys. 2016, 18, 32691-32696.

38

Du, Y. C.; Qiu, G.; Wang, Y. X.; Si, M. W.; Xu, X. F.; Wu, W. Z.; Ye, P. D. One-dimensional van der waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965-3973.

39

Pine, A. S.; Dresselhaus, G. Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 1971, 4, 356-371.

40

Shi, L.; Li, D. Y.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881-888.

41

Dong, L.; Xi, Q.; Zhou, J.; Xu, X. F.; Li, B. W. Phonon renormalization induced by electric field in ferroelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers. Phys. Rev. Appl. 2020, 13, 034019.

42

Xu, X. F.; Chen, J.; Li, B. W. Phonon thermal conduction in novel 2D materials. J. Phys. : Condens. Matter 2016, 28, 483001.

43

Wang, Q. L.; Chen, Y. Y.; Aiyiti, A.; Zheng, M. R.; Li, N. B.; Xu, X. F. Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires. Chin. Phys. B 2020, 29, 084402.

44

Wang, Q. L.; Liang, X.; Liu, B. H.; Song, Y. H.; Gao, G. H.; Xu, X. F. Thermal conductivity of V2O5 nanowires and their contact thermal conductance. Nanoscale 2020, 12, 1138-1143.

45

Wang, C. R.; Guo, J.; Dong, L.; Aiyiti, A.; Xu, X. F.; Li, B. W. Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci. Rep. 2016, 6, 25334.

46

Wang, Z. Q.; Xie, R. G.; Bui, C. T.; Liu, D.; Ni, X. X.; Li, B. W.; Thong, J. T. L. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 2011, 11, 113-118.

47

Guo, J.; Huang, Y.; Wu, X. S.; Wang, Q. L.; Zhou, X. J.; Xu, X. F.; Li, B. W. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-Type ZrTe5 nanoribbons. Phys. Status Solidi RRL 2019, 13, 1800529.

48

Yang, J. K.; Yang, Y.; Waltermire, S. W.; Gutu, T.; Zinn, A. A.; Xu, T. T.; Chen, Y. F.; Li, D. Y. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small 2011, 7, 2334-2340.

49

Xu, X. F.; Pereira, L. F. C.; Wang, Y.; Wu, J.; Zhang, K. W.; Zhao, X. M.; Bae, S.; Tinh Bui, C.; Xie, R. G.; Thong, J. T. L. et al. Length- dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014, 5, 3689.

50

Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934-2936.

51

Wang, H. D.; Kurata, K.; Fukunaga, T.; Zhang, X.; Takamatsu, H. Width dependent intrinsic thermal conductivity of suspended monolayer graphene. Int. J. Heat Mass Transf. 2017, 105, 76-80.

52

Zhang, Z. W.; Ouyang, Y. L.; Cheng, Y.; Chen, J.; Li, N. B.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1-26.

53

Aiyiti, A.; Hu, S. Q.; Wang, C. R.; Xi, Q.; Cheng, Z. F.; Xia, M. G.; Ma, Y. L.; Wu, J. B.; Guo, J.; Wang, Q. L. et al. Thermal conductivity of suspended few-layer MoS2. Nanoscale 2018, 10, 2727-2734.

54

Chen, Y.; Peng, B.; Cong, C. X.; Shang, J. Z.; Wu, L. S.; Yang, W. H.; Zhou, J. D.; Yu, P.; Zhang, H. B.; Wang, Y. L. et al. In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979.

55

Lee, S.; Yang, F.; Suh, J.; Yang, S. J.; Lee, Y.; Li, G.; Sung Choe, H.; Suslu, A.; Chen, Y. B.; Ko, C. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 2015, 6, 8573.

56

Wang, R. D.; Wang, T. Y.; Zobeiri, H.; Yuan, P. Y.; Deng, C.; Yue, Y. N.; Xu, S.; Wang, X. W. Measurement of the thermal conductivities of suspended MoS2 and MoSe2 by nanosecond ET-Raman without temperature calibration and laser absorption evaluation. Nanoscale 2018, 10, 23087-23102.

57

Ikari, T.; Berger, H.; Levy, F. Electrical properties of vapour grown tellurium single crystals. Mater. Res. Bull. 1986, 21, 99-105.

58

Li, T. W.; Nie, G.; Sun, Q. Highly sensitive tuning of lattice thermal conductivity of grapheme-like borophene by fluorination and chlorination. Nano Res. 2020, 13, 1171-1177.

59

Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555-558.

60

Zhou, H. Q.; Zhu, J. X.; Liu, Z.; Yan, Z.; Fan, X. J.; Lin, J.; Wang, G.; Yan, Q. Y.; Yu, T.; Ajayan, P. M. et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232-1240.

61

Pettes, M. T.; Maassen, J.; Jo, I.; Lundstrom, M. S.; Shi, L. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 2013, 13, 5316- 5322.

62

Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

63

Zhou, S.; Tao, X.; Gu, Y. Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J. Phys. Chem. C 2016, 120, 4753- 4758.

64

Yuan, P. Y.; Wang, R. D.; Wang, T. Y.; Wang, X. W.; Xie, Y. S. Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS2: 2.4 to 37.8 nm. Phys. Chem. Chem. Phys. 2018, 20, 25752-25761.

65

Adams, A. R.; Baumann, F.; Stuke, J. Thermal conductivity of selenium and tellurium single crystals and phonon drag of tellurium. Phys. Stat. Sol. 1967, 23, K99-K104.

66

Gao, Z. B.; Liu, G.; Ren, J. High thermoelectric performance in two-dimensional tellurium: An ab initio study. ACS Appl. Mater. Interfaces 2018, 10, 40702-40709.

Nano Research
Pages 4725-4731
Cite this article:
Wu X, Tao Q, Li D, et al. Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Research, 2021, 14(12): 4725-4731. https://doi.org/10.1007/s12274-021-3414-7
Topics:

707

Views

16

Crossref

15

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 15 December 2020
Revised: 22 February 2021
Accepted: 22 February 2021
Published: 08 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return