AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A highly accessible copper single-atom catalyst for wound antibacterial application

Yue Zhao1,§Yunpeng Yu1,§Feng Gao1Zhiyuan Wang1Wenxing Chen3Cai Chen4Jia Yang1Yancai Yao1Junyi Du1Chao Zhao1Yuen Wu1,2( )
Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) University of Science and Technology of ChinaHefei 230026 China
Dalian National Laboratory for Clean EnergyDalian 116023 China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081 China
College of Chemistry and Chemical Engineering Southwest Petroleum UniversityChengdu 610500 China

§ Yue Zhao and Yunpeng Yu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Bacterial infection arised from multipathogenic bacteria is a tricky issue that attracts worldwide attentions. In this paper, a highly accessible copper single-atom catalyst (Cu SAC) supported by biocompatible N-doped mesoporous carbon nanospheres was synthesized with the emulsion-template method. The tightly anchored copper single-atom of the catalyst could effectively transform O2 into O2• under ambient conditions by the ultra-large pore size (~ 23.80 nm) and small particle size (~ 97.71 nm). Due to multiple synergistically oxidative damages to biomolecules, the Cu SAC could be employed to eliminate different bacteria in vitro without the generation of multidrug resistance (MDR). Moreover, the Cu SAC could also promote wound healing in vivo by eradicating the propagation of bacteria at wound. It is envisioned that the Cu SAC with superior antibacterial performance could be applied in the treatment of related bacterial infection in future.

Electronic Supplementary Material

Download File(s)
12274_2021_3432_MOESM1_ESM.pdf (3.3 MB)

References

1

He, X. W.; Yang, Y. J.; Guo, Y. C.; Lu, S. G.; Du, Y.; Li, J. J.; Zhang, X. P.; Leung, N. L. C.; Zhao, Z.; Niu, G. L. et al. Phage-guided targeting, discriminative imaging, and synergistic killing of bacteria by AIE bioconjugates. J. Am. Chem. Soc. 2020, 142, 3959–3969.

2

Huo, M. F.; Wang, L. Y.; Zhang, H. X.; Zhang, L. L.; Chen, Y.; Shi, J. L. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small 2019, 15, 1901834.

3

Davies, S. C.; Fowler, T.; Watson, J.; Livermore, D. M.; Walker, D. Annual report of the chief medical officer: Infection and the rise of antimicrobial resistance. Lancet 2013, 381, 1606–1609.

4

Váradi, L.; Luo, J. L.; Hibbs, D. E.; Perry, J. D.; Anderson, R. J.; Orenga, S.; Groundwater, P. W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832.

5
World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014.
6

Baker, S. J.; Payne, D. J.; Rappuoli, R.; De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA 2018, 115, 12887–12895.

7

Park, D. H.; Joe, Y. H.; Hwang, J.; Byeon, J. H. Evaporation-condensation in the presence of unipolar ionic flow for solvent-free production of ultrasmall antibacterial particles. Chem. Eng. J. 2020, 381, 122639.

8

Huh, A. J.; Kwon, Y. J. "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145.

9

Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; de Aberasturi, D. J.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511.

10

Zhu, C. L.; Yang, Q. O.; Liu, L. B.; Lv, F. T.; Li, S. Y.; Yang, G. Q.; Wang, S. Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv. Mater. 2011, 23, 4805–4810.

11

Jana, T. K.; Maji, S. K.; Pal, A.; Maiti, R. P.; Dolai, T. K.; Chatterjee, K. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J. Colloid Interface Sci. 2016, 480, 9–16.

12

Mendoza, G.; Regiel-Futyra, A.; Andreu, V.; Sebastian, V.; Kyziol, A.; Stochel, G.; Arruebo, M. Bactericidal effect of gold-chitosan nanocomposites in coculture models of pathogenic bacteria and human macrophages. ACS Appl. Mater. Interfaces 2017, 9, 17693–17701.

13

Yang, J. J.; Wang, C.; Liu, X. L.; Yin, Y.; Ma, Y. H.; Gao, Y. F.; Wang, Y. Z.; Lu, Z. D.; Song, Y. J. Gallium–carbenicillin framework coated defect-rich hollow TiO2 as a photocatalyzed oxidative stress amplifier against complex infections. Adv. Funct. Mater. 2020, 30, 2004861.

14

He, W. W.; Kim, H. K.; Wamer, W. G.; Melka, D.; Callahan, J. H.; Yin, J. J. Photogenerated charge carriers and reactive oxygen species in ZnO/ Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 2014, 136, 750–757.

15

Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano- Micro Lett. 2015, 7, 219–242.

16

Xin, Q.; Shah, H.; Nawaz, A.; Xie, W. J.; Akram, M. Z.; Batool, A.; Tian, L. Q.; Jan, S. U.; Boddula, R.; Guo, B. D. et al. Antibacterial carbon-based nanomaterials. Adv. Mater. 2019, 31, 1804838.

17

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

18

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal- support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

19

Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co–N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.

20

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D.; Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

21

Guo, S. Y.; Yu, P.; Li, W. Q.; Yi, Y. P.; Wu, F.; Mao, L. Q. Electron hopping by interfacing semiconducting graphdiyne nanosheets and redox molecules for selective electrocatalysis. J. Am. Chem. Soc. 2020, 142, 2074–2082.

22

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

23

Zhuang, Z. H.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

24

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

25

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

26
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: 10.1007/s12274-020-3244-4.https://doi.org/10.1007/s12274-020-3244-4
27

Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

28

Zhu, C. B.; Wen, Y. R.; van Aken, P. A.; Maier, J.; Yu, Y. High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv. Funct. Mater. 2015, 25, 2335–2342.

29

Li, J. S.; Li, S. L.; Tang, Y. J.; Han, M.; Dai, Z. H.; Bao, J. C.; Lan, Y. Q. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER. Chem. Commun. 2015, 51, 2710–2713.

30

Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922– 13925.

31

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

32

Ehlert, C.; Unger, W. E. S.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: A study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083–14095.

33

Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

34

Mane, G. P.; Talapaneni, S. N.; Lakhi, K. S.; Ilbeygi, H.; Ravon, U.; Al-Bahily, K.; Mori, T.; Park, D. H.; Vinu, A. Highly ordered nitrogen- rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2017, 56, 8481–8485.

35

Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

36

Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G. S.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016, 9, 3003–3017.

37

Wang, R.; Shi, M. S.; Xu, F. Y.; Qiu, Y.; Zhang, P.; Shen, K. L.; Zhao, Q.; Yu, J. G.; Zhang, Y. F. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020, 11, 4465.

38

Chen, Y.; Huang, Y. K.; Zhou, S. L.; Sun, M. L.; Chen, L.; Wang, J. H.; Xu, M. J.; Liu, S. S.; Liang, K. F.; Zhang, Q. et al. Tailored chemodynamic nanomedicine improves pancreatic cancer treatment via controllable damaging neoplastic cells and reprogramming tumor microenvironment. Nano Lett. 2020, 20, 6780–6790.

39

Pan, X. T.; Wang, W. W.; Huang, Z. J.; Liu, S.; Guo, J.; Zhang, F. R.; Yuan, H. J.; Li, X.; Liu, F. Y.; Liu, H. Y. MOF-derived double- layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angew. Chem. Int. Ed. 2020, 59, 13557–13561.

40

Zhou, M.; Qian, Y. X.; Xie, J. Y.; Zhang, W. J.; Jiang, W. N.; Xiao, X. M.; Chen, S.; Dai, C. Z.; Cong, Z. H.; Ji, Z. M. et al. Poly(2- oxazoline)-based functional peptide mimics: Eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angew. Chem., Int. Ed. 2020, 59, 6412–6419.

41

Zhang, X. X.; Chen, G. P.; Yu, Y. R.; Sun, L. Y.; Zhao, Y. J. Bioinspired adhesive and antibacterial microneedles for versatile transdermal drug delivery. Research 2020, 2020, 3672120.

42

Jin, S. S.; He, D. Q.; Luo, D.; Wang, Y.; Yu, M.; Guan, B.; Fu, Y.; Li, Z. X.; Zhang, T.; Zhou, Y. H. et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano 2019, 13, 6581–6595.

43

Yang, C.; Luo, Y.; Lin, H.; Ge, M.; Shi, J. L.; Zhang, X. L. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano 2021, 15, 1086–1099.

Nano Research
Pages 4808-4813
Cite this article:
Zhao Y, Yu Y, Gao F, et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Research, 2021, 14(12): 4808-4813. https://doi.org/10.1007/s12274-021-3432-x
Topics:

876

Views

44

Crossref

40

Web of Science

43

Scopus

5

CSCD

Altmetrics

Received: 02 February 2021
Revised: 26 February 2021
Accepted: 01 March 2021
Published: 10 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return