Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Due to challenges in preparing pure metal clusters and in controlling reactions, the oxides produced by metal clusters reacting with oxygen are often different from traditional ion-molecule products in the gas phase and their reactivity pattern is also largely unveiled yet. In this work, utilizing a customized Re-TOFMS having a home-made cluster source and a flow tube reactor, we have observed the gaseous reactions of Nin± clusters with oxygen and found magic clusters of Ni13O8± that dominate the mass distributions. By quantum chemistry calculations, we find that both Ni13O8– and Ni13O8+ clusters bear a regular cubic structure with 8 oxygen anchoring the eight angles, however, they have rather different spin accommodations. The Ni13O8– clusters have 15 unpaired spin-up electrons exhibiting cubic aromaticity and decent ferromagnetism, while the Ni13O8+ clusters take a lower-spin ground state (11 unpaired electrons), with spin-down population on the central Ni atom pertaining to ferrimagnetism. This is a class of metalloxocube clusters that hold properties of aromaticity and ferromagnetism/ferrimagnetism charcterized by a few spin electrons, which embodies the bonding nature of superatomic compounds and enables to develop cluster-genetic materials of multi-functionality.
Knickelbein, M. B. Experimental observation of superparamagnetism in manganese clusters. Phys. Rev. Lett. 2001, 86, 5255-5257.
Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727-731.
Luo, Z. X.; Castleman, A. W. Special and general superatoms. Acc. Chem. Res. 2014, 47, 2931-2940.
Luo, Z. X.; Castleman, A. W. Jr.; Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456-14492.
Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminterfullerene. Nature 1985, 318, 162-163.
Bergeron, D. E.; Castleman, A. W. Jr.; Morisato, T.; Khanna, S. N. Formation of Al13I-: Evidence for the superhalogen character of Al13. Science 2004, 304, 84-87.
Guo, B. C.; Kerns, K. P.; Castleman, A. W. Jr. Ti8C12+—metallo- carbohedrenes: A new class of molecular clusters? Science 1992, 255, 1411-1413.
Guo, B. C.; Wei, S.; Purnell, J.; Buzza, S.; Castleman, A. W. Jr. Metallo-carbohedrenes [M8C12+ (M = V, Zr, Hf, and Ti)]: A class of stable molecular cluster ions. Science 1992, 256, 515-516.
Reber, A. C.; Khanna, S. N. Superatoms: Electronic and geometric effects on reactivity. Acc. Chem. Res. 2017, 50, 255-263.
Jena, P.; Sun, Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755-5780.
Yin, B. Q.; Luo, Z. X. Coinage metal clusters: From superatom chemistry to genetic materials. Coord. Chem. Rev. 2021, 429, 213643.
Reveles, J. U.; Clayborne, P. A.; Reber, A. C.; Khanna, S. N.; Pradhan, K.; Sen, P.; Pederson, M. R. Designer magnetic superatoms. Nat. Chem. 2009, 1, 310-315.
Yu, X. H.; Oganov, A. R.; Popov, I. A.; Qian, G. R.; Boldyrev, A. I. Antiferromagnetic stabilization in the Ti8O12 cluster. Angew. Chem. , Int. Ed. 2016, 55, 1699-1703.
Yu, X. H.; Zhang, X. M.; Yan, X. W. Stability of the Fe12O12 cluster. Nano Res. 2018, 11, 3574-3581.
Geng, L. J.; Weng, M. J.; Xu, C. Q.; Zhang, H. Y.; Cui, C. N.; Wu, H. M.; Chen, X.; Hu, M. Y.; Lin, H.; Sun, Z. D. et al. Co13O8— metalloxocubes: A new class of perovskite-like neutral clusters with cubic aromaticity. Natl. Sci. Rev. 2021, 8, nwaa201.
Hua, Y. H.; Zhang, H.; Xia, H. P. Aromaticity: History and development. Chin. J. Org. Chem. 2018, 38, 11-28. (in Chinese)
Gershoni-Poranne, R.; Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 2015, 44, 6597-6615.
Cocq, K.; Lepetit, C.; Maraval, V.; Chauvin, R. "Carbo-aromaticity"' and novel carbo-aromatic compounds. Chem. Soc. Rev. 2015, 44, 6535-6559.
Krygowski, T. M.; Cyranski, M. K. Structural aspects of aromaticity. Chem. Rev. 2001, 101, 1385-1420.
Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. A concentric planar doubly π-aromatic B19- cluster. Nat. Chem. 2010, 2, 202-206.
Bühl, M.; Hirsch, A. Spherical aromaticity of fullerenes. Chem. Rev. 2001, 101, 1153-1183.
Lu, X.; Chen, Z. F. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chem. Rev. 2005, 105, 3643-3696.
Boldyrev, A. I.; Wang, L. S. All-metal aromaticity and antiaromaticity. Chem. Rev. 2005, 105, 3716-3757.
Zubarev, D. Y.; Averkiev, B. B.; Zhai, H. J.; Wang, L. S.; Boldyrev, A. I. Aromaticity and antiaromaticity in transition-metal systems. Phys. Chem. Chem. Phys. 2008, 10, 257-267.
Zhai, H. J.; Averkiev, B. B.; Zubarev, D. Y.; Wang, L. S.; Boldyrev, A. I. δ aromaticity in [Ta3O3]-. Angew. Chem. , Int. Ed. 2007, 46, 4277-4280.
Huang, X.; Zhai, H. J.; Kiran, B.; Wang, L. S. Observation of d-orbital aromaticity. Angew. Chem. , Int. Ed. 2005, 44, 7251-7254.
Yu, X. H.; Oganov, A. R.; Popov, I. A.; Boldyrev, A. I. d-AO spherical aromaticity in Ce6O8. J. Comput. Chem. 2016, 37, 103-109.
Guzmán-Ramírez, G.; Robles, J.; Vega, A.; Aguilera-Granja, F. Stability, structural, and magnetic phase diagrams of ternary ferromagnetic 3d-transition-metal clusters with five and six atoms. J. Chem. Phys. 2011, 134, 054101.
Guirado-López, R. A.; Aguilera-Granja, F. Bimetallic Fe-Ni cluster alloys: Stability of core(Fe)-shell(Ni) arrays and their role played in the structure and magnetic behavior. J. Phys. Chem. C 2008, 112, 6729-6739.
Castleman, A. W. Jr.; Khanna, S. N. Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 2009, 113, 2664-2675.
Zhang, X. X.; Wang, Y.; Wang, H. P.; Lim, A.; Gantefoer, G.; Bowen, K. H.; Reveles, J. U.; Khanna, S. N. On the existence of designer magnetic superatoms. J. Am. Chem. Soc. 2013, 135, 4856-4861.
Aguilera-del-Toro, R. H.; Aguilera-Granja, F.; Balbás, L. C.; Vega, A. Structure, fragmentation patterns, and magnetic properties of small nickel oxide clusters. Phys. Chem. Chem. Phys. 2017, 19, 3366-3383.
Gutsev, G. L.; Belay, K. G.; Bozhenko, K. V.; Gutsev, L. G.; Ramachandran, B. R. A comparative study of small 3d-metal oxide (FeO)n, (CoO)n, and (NiO)n clusters. Phys. Chem. Chem. Phys. 2016, 18, 27858-27867.
Apsel, S. E.; Emmert, J. W.; Deng, J.; Bloomfield, L. A. Surface- enhanced magnetism in nickel clusters. Phys. Rev. Lett. 1996, 76, 1441-1444.
Bucher, J. P.; Douglass, D. C.; Bloomfield, L. A. Magnetic properties of free cobalt clusters. Phys. Rev. Lett. 1991, 66, 3052-3055.
Billas, I. M.; Châtelain, A.; de Heer, W. A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 1994, 265, 1682-1684.
Jia, Y. H.; Luo, Z. X. Thirteen-atom metal clusters for genetic materials. Coordin. Chem. Rev. 2019, 400, 213053.
Zhang, H. Y.; Wu, H. M.; Geng, L. J.; Jia, Y. H.; Yang, M. Z.; Luo, Z. X. Furthering the reaction mechanism of cationic vanadium clusters towards oxygen. Phys. Chem. Chem. Phys. 2019, 21, 11234- 11241.
Armstrong, A.; Zhang, H. Y.; Reber, A. C.; Jia, Y. H.; Wu, H. M.; Luo, Z. X.; Khanna, S. N. Al valence controls the coordination and stability of cationic aluminum-oxygen clusters in reactions of Aln+ with oxygen. J. Phys. Chem. A 2019, 123, 7463-7469.
Geng, L. J.; Cui, C. N.; Jia, Y. H.; Wu, H. M.; Zhang, H. Y.; Yin, B. Q.; Sun, Z. D.; Luo, Z. X. Reactivity of cobalt clusters Con±/0 with ammonia: Co3+ cluster catalysis for NH3 dehydrogenation. J. Phys. Chem. A 2020, 124, 5879-5886.
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.
Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244-13249.
Guerra, C. F.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Towards an order-N DFT method. Theor. Chem. Acc. 1998, 99, 391-403.
te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931-967.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.
Sugawara, K. I.; Koga, K. Selective formation of Ni13O8+ and Ni16O10+ by the reactions of nickel cluster cations with oxygen. Chem. Phys. Lett. 2005, 409, 197-202.
Sun, Q.; Sakurai, M.; Wang, Q.; Yu, J. Z.; Wang, G. H.; Sumiyama, K.; Kawazoe, Y. Geometry and electronic structures of magic transition- metal oxide clusters M9O6 (M = Fe, Co, and Ni). Phys. Rev. B 2000, 62, 8500-8507.
Wang, Q.; Sun, Q.; Sakurai, M.; Yu, J. Z.; Gu, B. L.; Sumiyama, K.; Kawazoe, Y. Geometry and electronic structure of magic iron oxide clusters. Phys. Rev. B 1999, 59, 12672-12677.
Yin, B. Q.; Du, Q. Y.; Geng, L. J.; Zhang, H. Y.; Luo, Z. X.; Zhou, S.; Zhao, J. J. Anionic copper clusters reacting with NO: An open-shell superatom Cu18-. J. Phys. Chem. Lett. 2020, 11, 5807-5814.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
Meyer, J.; Tombers, M.; van Wüllen, C.; Niedner-Schatteburg, G.; Peredkov, S.; Eberhardt, W.; Neeb, M.; Palutke, S.; Martins, M.; Wurth, W. The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters. J. Chem. Phys. 2015, 143, 104302.
Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683-686.
Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207-5217.
Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; von Ragué Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842-3888.
Jusélius, J.; Sundholm, D.; Gauss, J. Calculation of current densities using gauge-including atomic orbitals. J. Chem. Phys. 2004, 121, 3952-3963.