Graphical Abstract

Photothermal CO2 reduction is an efficient and sustainable catalytic path for CO2 treatment. Here, we successfully fabricated a novel series of Ni-based catalysts (Ni-x) via H2 reduction of NiAl-layered double hydroxide nanosheets at temperatures (x) ranging from 300 to 600 ℃. With the increase of the reduction temperature, the methane generation rate of the Ni-x catalyst for photothermal CO2 hydrogenation gradually increased under ultraviolet-visible-infrared (UV–vis–IR) irradiation in a flow-type system. The Ni-600 catalyst showed a CO2 conversion of 78.4%, offering a CH4 production rate of 278.8 mmol·g–1·h–1, with near 100% selectivity and 100 h long-term stability. Detailed characterization analyses showed metallic Ni nanoparticles supported on amorphous alumina are the catalytically active phase for CO2 methanation. This study provides a possibility for large-scale conversion and utilization of CO2 from a sustainable perspective.
Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330, 1797-1801.
Dasgupta, S.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Solar fuels editorial. Chem. Soc. Rev. 2013, 42, 2213-2214.
Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528-17551.
Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984-8034.
He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem., Int. Ed. 2013, 52, 9620-9633.
Gattuso, J. P.; Magnan, A.; Billé, R.; Cheung, W. W. L.; Howes, E. L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S. R.; Eakin, C. M. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722.
Su, X.; Yang, X. F.; Huang, Y. Q.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656-664.
Zhao, T. X.; Hu, X. B.; Wu, Y. T.; Zhang, Z. B. Hydrogenation of CO2 to formate with H2: Transition metal free catalyst based on a Lewis pair. Angew. Chem., Int. Ed. 2019, 58, 722-726.
Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193-3228.
Miguel, C. V.; Mendes, A.; Madeira, L. M. Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst. J. CO2 Util. 2018, 25, 128-136.
Götz, M.; Lefebvre, J.; Mörs, F.; Koch, A. M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energ. 2016, 85, 1371-1390.
Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Selective light absorber- assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 2017, 139, 4123-4129.
Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824-7831.
Hu, B. B.; Guo, Q.; Wang, K.; Wang, X. T. Enhanced photocatalytic activity of porous In2O3 for reduction of CO2 with H2O. J. Mater. Sci. : Mater. Electron. 2019, 30, 7950-7962.
Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638.
Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889-898.
Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth- abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.
Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 2020, 49, 6579-6591.
Li, M.; Li, P.; Chang, K.; Wang, T.; Liu, L. Q.; Kang, Q.; Ouyang, S. X.; Ye, J. H. Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem. Commun. 2015, 51, 7645-7648.
Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626.
Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745-758.
Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J. W.; Cho, C. H.; In, S. I. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Appl. Catal. B: Environ. 2020, 279, 119344.
Melsheimer, J.; Guo, W.; Ziegler, D.; Wesemann, M.; Schlögl, R. Methanation of carbon dioxide over Ru/titania at room temperature: Explorations for a photoassisted catalytic reaction. Catal. Lett. 1991, 11, 157-168.
Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238-2241.
Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491-9495.
Song, C. Q.; Liu, X.; Xu, M.; Masi, D.; Wang, Y. G.; Deng, Y. C.; Zhang, M. T.; Qin, X. T.; Feng, K.; Yan, J. et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: From oxide to carbide. ACS Catal. 2020, 10, 10364-10374.
Wang, L.; Dong, Y. C.; Yan, T. J.; Hu, Z. X.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C. Y.; Storey, E. E. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11. 2432.
Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.
Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.
O'Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.
Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.
Jia, J.; Wang, H.; Lu, Z. L.; O'Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.
Sastre, F.; Puga, A. V.; Liu, L. C.; Corma, A.; Garcia, H. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J. Am. Chem. Soc. 2014, 136, 6798-6801.
Adachi-Pagano, M.; Forano, C.; Besse, J. P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction- control of size and morphology. J. Mater. Chem. 2003, 13, 1988- 1993.
Fogg, A. M.; Rohl, A. L.; Parkinson, G. M.; O'Hare, D. Predicting guest orientations in layered double hydroxide intercalates. Chem. Mater. 1999, 11, 1194-1200.
Gao, W.; Zhao, Y. F.; Chen, H. R.; Chen, H.; Li, Y. W.; He, S.; Zhang, Y. K.; Wei, M.; Evans, D. G.; Duan, X. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas. Green Chem. 2015, 17, 1525-1534.
Li, Z. H.; Liu, J. J.; Zhao, Y. F.; Shi, R.; Waterhouse, G. I. N.; Wang, Y. S.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy 2019, 60, 467-475.
Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739- 14741.
Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina- supported CoFe alloy catalysts derived from layered-double- hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.
Gorschlüter, A.; Merz, H. Locallied d-d excitations in NiO(100) and CoO(100). Phys. Rev. B 1994, 49, 17293-17302.
Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem., Int. Ed. 2019, 58, 11860-11867.