AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system

Zhenhua Li1,2Run Shi2,3Jiaqi Zhao2,4Tierui Zhang1 ( )
College of Chemistry Central China Normal UniversityWuhan 430079 China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of SciencesBeijing 100190 China
Key Laboratory of Thermal Management and Energy Utilization of Aircraft Ministry of Industry and Information TechnologyNanjing 210016 China
Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of SciencesBeijing 100049 China
Show Author Information

Graphical Abstract

Abstract

Photothermal CO2 reduction is an efficient and sustainable catalytic path for CO2 treatment. Here, we successfully fabricated a novel series of Ni-based catalysts (Ni-x) via H2 reduction of NiAl-layered double hydroxide nanosheets at temperatures (x) ranging from 300 to 600 ℃. With the increase of the reduction temperature, the methane generation rate of the Ni-x catalyst for photothermal CO2 hydrogenation gradually increased under ultraviolet-visible-infrared (UV–vis–IR) irradiation in a flow-type system. The Ni-600 catalyst showed a CO2 conversion of 78.4%, offering a CH4 production rate of 278.8 mmol·g–1·h–1, with near 100% selectivity and 100 h long-term stability. Detailed characterization analyses showed metallic Ni nanoparticles supported on amorphous alumina are the catalytically active phase for CO2 methanation. This study provides a possibility for large-scale conversion and utilization of CO2 from a sustainable perspective.

Electronic Supplementary Material

Download File(s)
12274_2021_3436_MOESM1_ESM.pdf (2 MB)

References

1

Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330, 1797-1801.

2

Dasgupta, S.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Solar fuels editorial. Chem. Soc. Rev. 2013, 42, 2213-2214.

3

Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528-17551.

4

Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984-8034.

5

He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem., Int. Ed. 2013, 52, 9620-9633.

6

Gattuso, J. P.; Magnan, A.; Billé, R.; Cheung, W. W. L.; Howes, E. L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S. R.; Eakin, C. M. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722.

7

Su, X.; Yang, X. F.; Huang, Y. Q.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656-664.

8

Zhao, T. X.; Hu, X. B.; Wu, Y. T.; Zhang, Z. B. Hydrogenation of CO2 to formate with H2: Transition metal free catalyst based on a Lewis pair. Angew. Chem., Int. Ed. 2019, 58, 722-726.

9

Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193-3228.

10

Miguel, C. V.; Mendes, A.; Madeira, L. M. Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst. J. CO2 Util. 2018, 25, 128-136.

11

Götz, M.; Lefebvre, J.; Mörs, F.; Koch, A. M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energ. 2016, 85, 1371-1390.

12

Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Selective light absorber- assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.

13

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

14

Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 2017, 139, 4123-4129.

15

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824-7831.

16

Hu, B. B.; Guo, Q.; Wang, K.; Wang, X. T. Enhanced photocatalytic activity of porous In2O3 for reduction of CO2 with H2O. J. Mater. Sci. : Mater. Electron. 2019, 30, 7950-7962.

17

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638.

18

Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889-898.

19

Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth- abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.

20

Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 2020, 49, 6579-6591.

21

Li, M.; Li, P.; Chang, K.; Wang, T.; Liu, L. Q.; Kang, Q.; Ouyang, S. X.; Ye, J. H. Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem. Commun. 2015, 51, 7645-7648.

22

Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626.

23

Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745-758.

24

Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J. W.; Cho, C. H.; In, S. I. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Appl. Catal. B: Environ. 2020, 279, 119344.

25

Melsheimer, J.; Guo, W.; Ziegler, D.; Wesemann, M.; Schlögl, R. Methanation of carbon dioxide over Ru/titania at room temperature: Explorations for a photoassisted catalytic reaction. Catal. Lett. 1991, 11, 157-168.

26

Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238-2241.

27

Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491-9495.

28

Song, C. Q.; Liu, X.; Xu, M.; Masi, D.; Wang, Y. G.; Deng, Y. C.; Zhang, M. T.; Qin, X. T.; Feng, K.; Yan, J. et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: From oxide to carbide. ACS Catal. 2020, 10, 10364-10374.

29

Wang, L.; Dong, Y. C.; Yan, T. J.; Hu, Z. X.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C. Y.; Storey, E. E. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11. 2432.

30

Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.

31

Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

32

O'Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.

33

Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.

34

Jia, J.; Wang, H.; Lu, Z. L.; O'Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

35

Sastre, F.; Puga, A. V.; Liu, L. C.; Corma, A.; Garcia, H. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J. Am. Chem. Soc. 2014, 136, 6798-6801.

36

Adachi-Pagano, M.; Forano, C.; Besse, J. P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction- control of size and morphology. J. Mater. Chem. 2003, 13, 1988- 1993.

37

Fogg, A. M.; Rohl, A. L.; Parkinson, G. M.; O'Hare, D. Predicting guest orientations in layered double hydroxide intercalates. Chem. Mater. 1999, 11, 1194-1200.

38

Gao, W.; Zhao, Y. F.; Chen, H. R.; Chen, H.; Li, Y. W.; He, S.; Zhang, Y. K.; Wei, M.; Evans, D. G.; Duan, X. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas. Green Chem. 2015, 17, 1525-1534.

39

Li, Z. H.; Liu, J. J.; Zhao, Y. F.; Shi, R.; Waterhouse, G. I. N.; Wang, Y. S.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy 2019, 60, 467-475.

40

Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739- 14741.

41

Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina- supported CoFe alloy catalysts derived from layered-double- hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

42

Gorschlüter, A.; Merz, H. Locallied d-d excitations in NiO(100) and CoO(100). Phys. Rev. B 1994, 49, 17293-17302.

43

Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem., Int. Ed. 2019, 58, 11860-11867.

Nano Research
Pages 4828-4832
Cite this article:
Li Z, Shi R, Zhao J, et al. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Research, 2021, 14(12): 4828-4832. https://doi.org/10.1007/s12274-021-3436-6
Topics:

735

Views

74

Crossref

77

Web of Science

80

Scopus

9

CSCD

Altmetrics

Received: 21 January 2021
Revised: 23 February 2021
Accepted: 03 March 2021
Published: 17 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return