AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in anode materials for potassium-ion batteries: A review

Lianbo Ma1,2,3Yaohui Lv1Junxiong Wu4( )Chuan Xia5Qi Kang6( )Yizhou Zhang7Hanfeng Liang8Zhong Jin2,3( )
School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
Shenzhen Research Institute of Nanjing UniversityShenzhen518063China
Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong KongChina
School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong UniversityShanghai200240China
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials SciencesNanjing University of Information Science & TechnologyNanjing210044China
College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Show Author Information

Graphical Abstract

Abstract

Potassium-ion batteries (PIBs) are appealing alternatives to conventional lithium-ion batteries (LIBs) because of their wide potential window, fast ionic conductivity in the electrolyte, and reduced cost. However, PIBs suffer from sluggish K+ reaction kinetics in electrode materials, large volume expansion of electroactive materials, and the unstable solid electrolyte interphase. Various strategies, especially in terms of electrode design, have been proposed to address these issues. In this review, the recent progress on advanced anode materials of PIBs is systematically discussed, ranging from the design principles, and nanoscale fabrication and engineering to the structure-performance relationship. Finally, the remaining limitations, potential solutions, and possible research directions for the development of PIBs towards practical applications are presented. This review will provide new insights into the lab development and real-world applications of PIBs.

References

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

3

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

4

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

5

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

6

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

7

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

8

Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

9

Chen, Y.; Zhuo, S. M.; Li, Z. Y.; Wang, C. L. Redox polymers for rechargeable metal-ion batteries. EnergyChem 2020, 2, 100030.

10

Cheng, Y.; Xiao, X.; Pan, K. M.; Pang, H. Development and application of self-healing materials in smart batteries and supercapacitors. Chem. Eng. J. 2020, 380, 122565.

11

Yang, S. N.; Cheng, Y.; Xiao, X.; Pang, H. Development and application of carbon fiber in batteries. Chem. Eng. J. 2020, 384, 123294.

12

Chen, M. Z.; Wang, E. H.; Liu, Q. N.; Guo, X. D.; Chen, W. H.; Chou, S. L.; Dou, S. X. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 19, 163–178.

13

Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

14

Chen, M. Z.; Cortie, D.; Hu, Z.; Jin, H. L.; Wang, S.; Gu, Q. F.; Hua, W. B.; Wang, E. H.; Lai, W. H.; Chen, L. N. et al. A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1800944.

15

Xu, Y. S.; Duan, S. Y.; Sun, Y. G.; Bin, D. S.; Tao, X. S.; Zhang, D.; Liu, Y.; Cao, A. M.; Wan, L. J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334–4352.

16

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

17

Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

18

Ma, L. B.; Cui, J.; Yao, S. S.; Liu, X. M.; Luo, Y. S.; Shen, X. P.; Kim, J. K. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020, 27, 522–554.

19

Ma, L. B.; Zhu, G. Y.; Wang, D. D.; Chen, H. X.; Lv, Y. H.; Zhang, Y. Z.; He, X. J.; Pang, H. Emerging metal single atoms in electrocatalysts and batteries. Adv. Funct. Mater. 2020, 30, 2003870.

20

Sultana, I.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.

21

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero- González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

22

Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 2013, 7, 11218–11226.

23

An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72.

24

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

25

Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus- based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

26

Zhu, B.; Wang, X. Y.; Yao, P. C.; Li, J. L.; Zhu, J. Towards high energy density lithium battery anodes: Silicon and lithium. Chem. Sci. 2019, 10, 7132–7148.

27

Wu, J. X.; Qin, X. Y.; Zhang, H. R.; He, Y. B.; Li, B. H.; Ke, L.; Lv, W.; Du, H. D.; Yang, Q. H.; Kang, F. Y. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443.

28

Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y. B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 2016, 98, 582–591.

29

Ren, X. D.; Wu, Y. Y. A low-overpotential potassium–oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 2013, 135, 2923–2926.

30

Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175.

31

Frackowiak, E.; Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950.

32

Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.

33

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

34

Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene- based electrodes. Adv. Mater. 2012, 24, 5979–6004.

35

Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

36

Liu, L. Y.; Lin, Z. F.; Chane-Ching, J. Y.; Shao, H.; Taberna, P. L.; Simon, P. 3D rGO aerogel with superior electrochemical performance for K-ion battery. Energy Storage Mater. 2019, 19, 306–313.

37

Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Inter. 2019, 11, 45578–45585.

38

Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.

39

Xue, Y. Z.; Wu, B.; Bao, Q. L.; Liu, Y. Q. Controllable synthesis of doped graphene and its applications. Small 2014, 10, 2975–2991.

40

Wen, Y. Y.; Huang, C. C.; Wang, L. Z.; Hulicova-Jurcakova, D. Heteroatom-doped graphene for electrochemical energy storage. Chin. Sci. Bull. 2014, 59, 2102–2121.

41

Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38–46.

42

Qiu, W. D.; Xiao, H. B.; Li, Y.; Lu, X. H.; Tong, Y. X. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 2019, 15, 1901285.

43

Ju, Z. C.; Zhang, S.; Xing, Z.; Zhuang, Q. C.; Qiang, Y. H.; Qian, Y. T. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Inter. 2016, 8, 20682–20690.

44

Tang, Y. F.; Zhao, Y.; Burkert, S. C.; Ding, M. N.; Ellis, J. E.; Star, A. Efficient separation of nitrogen-doped carbon nanotube cups. Carbon 2014, 80, 583–590.

45

Tang, Y. F.; Burkert, S. C.; Zhao, Y.; Saidi, W. A.; Star, A. The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J. Phys. Chem. C 2013, 117, 25213–25221.

46

Li, J. C.; Kaur, A. P.; Meier, M. S.; Cheng, Y. T. Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes. J. Appl. Electrochem. 2014, 44, 179–187.

47

Wang, B.; Yuan, F.; Wang, W.; Zhang, D.; Sun, H. L.; Xi, K.; Wang, D. L.; Chu, J. H.; Wang, Q. J.; Li, W. A carbon microtube array with a multihole cross profile: Releasing the stress and boosting long- cycling and high-rate potassium ion storage. J. Mater. Chem. A 2019, 7, 25845–25852.

48

Moussa, M.; Al-Bataineh, S. A.; Losic, D.; Dubal, D. P. Engineering of high-performance potassium-ion capacitors using polyaniline-derived N-doped carbon nanotubes anode and laser scribed graphene oxide cathode. Appl. Mater. Today 2019, 16, 425–434.

49

Yu, Y.; Luo, Y. F.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Li, J.; Wang, J. P. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 2018, 10, 19972–19978.

50

Chew, S. Y.; Ng, S. H.; Wang, J. Z.; Novák, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 2009, 47, 2976–2983.

51

Zhao, X. X.; Tang, Y. F.; Ni, C. L.; Wang, J. W.; Star, A.; Xu, Y. H. Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Appl. Energy Mater. 2018, 1, 1703–1707.

52

Shen, C.; Yuan, K.; Tian, T.; Bai, M. H.; Wang, J. G.; Li, X. F.; Xie, K. Y.; Fu, Q. G.; Wei, B. Q. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl. Mater. Inter. 2019, 11, 5015–5021.

53

Hu, Y. X.; Debnath, S.; Hu, H.; Luo, B.; Zhu, X. B.; Wang, S. C.; Hankel, M.; Searles, D. J.; Wang, L. Z. Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries. J. Mater. Chem. A 2019, 7, 15123–15130.

54

Wang, Y. W.; Xiao, N.; Wang, Z. Y.; Tang, Y. C.; Li, H. Q.; Yu, M. L.; Liu, C.; Zhou, Y.; Qiu, J. S. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 2018, 135, 187–194.

55

Li, W. H.; Li, M. S.; Adair, K. R.; Sun, X. L.; Yu, Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2017, 5, 13882–13906.

56

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

57

Zhang, M.; Shoaib, M.; Fei, H. L.; Wang, T.; Zhong, J.; Fan, L.; Wang, L.; Luo, H. Y.; Tan, S.; Wang, Y. Y. et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.

58

Xu, Y.; Yuan, T.; Zhao, Y. H.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life. Adv. Mater. Inter. 2020, 7, 1901829.

59

Xie, Y. H.; Chen, Y.; Liu, L.; Tao, P.; Fan, M. P.; Xu, N.; Shen, X. W.; Yan, C. L. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 2017, 29, 1702268.

60

Sun, X. Z.; Wang, C. L.; Gong, Y.; Gu, L.; Chen, Q. W.; Yu, Y. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage. Small 2018, 14, 1802218.

61

Hao, R.; Lan, H.; Kuang, C. W.; Wang, H.; Guo, L. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 2018, 128, 224–230.

62

Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

63

Liang, C. D.; Li, Z. J.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem., Int. Ed. 2008, 47, 3696–3717.

64

Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.

65

Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal−organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

66

Wang, G.; Xiong, X. H.; Xie, D.; Lin, Z. H.; Zheng, J.; Zheng, F. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Liu, M. L. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 2018, 6, 24317–24323.

67

Ruan, J. F.; Wu, X.; Wang, Y.; Zheng, S. Y.; Sun, D. L.; Song, Y.; Chen, M. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 2019, 7, 19305–19315.

68

Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

69

Zhang, Y.; Yang, L.; Tian, Y.; Li, L.; Li, J. Y.; Qiu, Y. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 2019, 229, 303–309.

70

Hong, W. W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J. G.; Wei, W. F.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 2019, 65, 104038.

71

Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

72

Qin, J.; Sari, H. M. K.; He, C. N.; Li, X. F. A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage. J. Mater. Chem. A 2019, 7, 3673–3681.

73

Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

74

Liu, S. T.; Yang, B. B.; Zhou, J. S.; Song, H. H. Nitrogen-rich carbon- onion-constructed nanosheets: An ultrafast and ultrastable dual anode material for sodium and potassium storage. J. Mater. Chem. A 2019, 7, 18499–18509.

75

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

76

Xiao, N.; Zhang, X. Y.; Liu, C.; Wang, Y. W.; Li, H. Q.; Qiu, J. S. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574–581.

77

Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T. Q.; Han, Y.; Wang, Y. S.; Tian, J.; Lin, N. et al. In situ revealing the electroactivity of P–O and P–C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 2019, 9, 1901676.

78

Kamiyama, A.; Kubota, K.; Nakano, T.; Fujimura, S.; Shiraishi, S.; Tsukada, H.; Komaba, S. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery. ACS Appl. Energy Mater. 2020, 3, 135–140.

79

Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Tian, J.; Lin, N.; Qian, Y. T. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem., Int. Ed. 2019, 58, 18108–18115.

80

Mahmood, A.; Li, S.; Ali, Z.; Tabassum, H.; Zhu, B. J.; Liang, Z. B.; Meng, W.; Aftab, W.; Guo, W. H.; Zhang, H. et al. Ultrafast sodium/ potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 2019, 31, 1805430.

81

Li, Y. P.; Yang, C. H.; Zheng, F. H.; Ou, X.; Pan, Q. C.; Liu, Y. Z.; Wang, G. High pyridine N-doped porous carbon derived from metal–organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 2018, 6, 17959–17966.

82

Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

83

Zhang, W. L.; Cao, Z.; Wang, W. X.; Alhajji, E.; Emwas, A. H.; Costa, P. M. F. J.; Cavallo, L.; Alshareef, H. N. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem., Int. Ed. 2020, 59, 4448–4455.

84

Liu, Y.; Dai, H. D.; Wu, L.; Zhou, W. B.; He, L.; Wang, W. G.; Yan, W. Q.; Huang, Q. H.; Fu, L. J.; Wu, Y. P. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1901379.

85

Lin, X. Y.; Huang, J. Q.; Zhang, B. Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 2019, 143, 138–146.

86

Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

87

Yamamoto, H.; Muratsubaki, S.; Kubota, K.; Fukunishi, M.; Watanabe, H.; Kim, J.; Komaba, S. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J. Mater. Chem. A 2018, 6, 16844–16848.

88

Zhang, Z. L.; Jia, B. R.; Liu, L.; Zhao, Y. Z.; Wu, H. Y.; Qin, M. L.; Han, K.; Wang, W. A.; Xi, K.; Zhang, L. et al. Hollow multihole carbon bowls: A stress–release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 2019, 13, 11363–11371.

89

Gao, C. L.; Wang, Q.; Luo, S. H.; Wang, Z. Y.; Zhang, Y. H.; Liu, Y. G.; Hao, A. M.; Guo, R. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 2019, 415, 165–171.

90

Arnaiz, M.; Bothe, A.; Dsoke, S.; Balducci, A.; Ajuria, J. Aprotic and protic ionic liquids combined with olive pits derived hard carbon for potassium-ion batteries. J. Electrochem. Soc. 2019, 166, A3504−A3510.

91

Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen- rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017, 8, 161–168.

92

Li, H. Y.; Cheng, Z.; Zhang, Q.; Natan, A.; Yang, Y.; Cao, D. X.; Zhu, H. L. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2018, 18, 7407–7413.

93

Chen, C.; Wu, M. Q.; Wang, Y. S.; Zaghib, K. Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J. Power Sources 2019, 444, 227310.

94

Qi, X. J.; Huang, K. S.; Xu, X.; Zhao, W.; Wang, H.; Zhuang, Q. C.; Ju, Z. C. Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 2018, 131, 79–85.

95

Ma, H. L.; Qi, X. J.; Peng, D. Q.; Chen, Y. X.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. Chem. Select 2019, 4, 11488–11495.

96

Wu, X.; Lam, C. W. K.; Wu, N. Q.; Pang, S. S.; Xing, Z.; Zhang, W.; Ju, Z. C. Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries. Mater. Today Energy 2019, 11, 182–191.

97

Zhang, R.; Li, H. B.; Li, R.; Wei, D. H.; Kang, W. J.; Ju, Z. C.; Xiong, S. L. Boosting the potassium-ion storage performance of a carbon anode by chemically regulating oxygen-containing species. Chem. Commun. 2019, 55, 14147–14150.

98

Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J. G.; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601–610.

99

Li, Y. P.; Zhong, W. T.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Xiong, X. H.; Liu, M. L. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 2019, 358, 1147–1154.

100

Lu, G. F.; Wang, H. L.; Zheng, Y. L.; Zhang, H.; Yang, Y. P.; Shi, J.; Huang, M. H.; Liu, W. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium- and potassium-ion storage. Electrochim. Acta 2019, 319, 541–551.

101

Li, D. J.; Cheng, X. L.; Xu, R.; Wu, Y.; Zhou, X. F.; Ma, C.; Yu, Y. Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 19929–19938.

102

Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C 2018, 122, 18266–18273.

103

Liu, Q.; Fan, L.; Ma, R. F.; Chen, S. H.; Yu, X. Z.; Yang, H. G.; Xie, Y.; Han, X.; Lu, B. G. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem. Commun. 2018, 54, 11773–11776.

104

McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Inter. 2015, 7, 26158–26166.

105

Sultana, I.; Rahman, M. M.; Liu, J. N.; Sharma, N.; Ellis, A. V.; Chen, Y.; Glushenkov, A. M. Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J. Power Sources 2019, 413, 476–484.

106

Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

107

Gabaudan, V.; Touja, J.; Cot, D.; Flahaut, E.; Stievano, L.; Monconduit, L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem. Commun. 2019, 105, 106493.

108

Zhou, L.; Cao, Z.; Zhang, J.; Cheng, H.; Liu, G.; Park, G. T.; Cavallo, L.; Wang, L. M.; Alshareef, H. N.; Sun, Y. K. et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries. Adv. Mater. 2021, 33, 2005993.

109

Zhao, N.; Qin, J.; Chu, L. J.; Wang, L. Z.; Xu, D.; Wang, X. J.; Yang, H. J.; Zhang, J. J.; Li, X. F. Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 2020, 78, 105345.

110

Zhao, R. Z.; Di, H. X.; Wang, C. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Zhang, L. Y.; Yin, L. W. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 2020, 14, 13938–13951.

111

Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. G. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.

112

He, X. D.; Liu, Z. H.; Liao, J. Y.; Ding, X.; Hu, Q.; Xiao, L. N.; Wang, S.; Chen, C. H. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9629–9637.

113

Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

114

Zhang, W. M.; Miao, W. F.; Liu, X. Y.; Li, L.; Yu, Z.; Zhang, Q. H. High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J. Alloys Compd. 2018, 769, 141–148.

115

Wang, H.; Wu, X.; Qi, X. J.; Zhao, W.; Ju, Z. C. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37.

116

Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

117

Yi, Z.; Lin, N.; Zhang, W. Q.; Wang, W. W.; Zhu, Y. C.; Qian, Y. T. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018, 10, 13236– 13241.

118

An, Y. L.; Tian, Y.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018, 12, 12932–12940.

119

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

120

Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.

121

Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

122

Wang, Q. N.; Zhao, X. X.; Ni, C. L.; Tian, H.; Li, J. X.; Zhang, Z.; Mao, S. X.; Wang, J. W.; Xu, Y. H. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J. Phys. Chem. C 2017, 121, 12652–12657.

123

Lang, J. H.; Li, J. R.; Ou, X. W.; Zhang, F.; Shin, K.; Tang, Y. B. A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life. ACS Appl. Mater. Inter. 2020, 12, 2424–2431.

124

Yang, Y. L.; Li, D.; Zhang, J. Q.; Suo, G. Q.; Yu, Q. Y.; Feng, L.; Hou, X. J.; Ye, X. H.; Zhang, L.; Wang, W. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater. Lett. 2019, 256, 126613.

125

Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279–9282.

126

Wang, H.; Xing, Z.; Hu, Z. K.; Zhang, Y.; Hu, Y.; Sun, Y. W.; Ju, Z. C.; Zhuang, Q. C. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: Advanced anodes for high-rate and long life potassium-ion batteries. Appl. Mater. Today 2019, 15, 58–66.

127

Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

128

Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore– shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

129

Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

130

Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

131

Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687–4691.

132

Yang, W. W.; Lu, Y. X.; Zhao, C. X.; Liu, H. L. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron. Mater. Lett. 2020, 16, 89–98.

133

Qin, G. H.; Liu, Y. H.; Liu, F. S.; Sun, X.; Hou, L. R.; Liu, B. B.; Yuan, C. Z. Magnetic field assisted construction of hollow red P nanospheres confined in hierarchical N-doped carbon nanosheets/ nanotubes 3D framework for efficient potassium storage. Adv. Energy Mater. 2021, 11, 2003429.

134

Chang, W. C.; Wu, J. H.; Chen, K. T.; Tuan, H. Y. Red phosphorus potassium-ion battery anodes. Adv. Sci. 2019, 6, 1801354.

135

Sultana, I.; Rahman, M. M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M. High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5, 23506–23512.

136

Gao, Y. Q.; Ru, Q.; Liu, Y.; Cheng, S. K.; Wei, L.; Ling, F. C. C.; Chen, F. M.; Hou, X. H. Mosaic red phosphorus/MoS2 hybrid as an anode to boost potassium-ion storage. ChemElectroChem 2019, 6, 4689–4695.

137

Wu, X.; Zhao, W.; Wang, H.; Qi, X. J.; Xing, Z.; Zhuang, Q. C.; Ju, Z. C. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 2018, 378, 460–467.

138

Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351–1358.

139

Liu, D.; Huang, X. K.; Qu, D. Y.; Zheng, D.; Wang, G. W.; Harris, J.; Si, J. Y.; Ding, T. Y.; Chen, J. H.; Qu, D. Y. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018, 52, 1–10.

140

Xiong, P. X.; Bai, P. X.; Tu, S. B.; Cheng, M. R.; Zhang, J. F.; Sun, J.; Xu, Y. H. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 2018, 14, 1802140.

141

Huang, X. K.; Liu, D.; Guo, X. R.; Sui, X. Y.; Qu, D. Y.; Chen, J. H. Phosphorus/carbon composite anode for potassium-ion batteries: Insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain. Chem. Eng. 2018, 6, 16308–16314.

142

Wang, H.; Wang, L. F.; Wang, L. C.; Xing, Z.; Wu, X.; Zhao, W.; Qi, X. J.; Ju, Z. C.; Zhuang, Q. C. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chem. –Eur. J. 2018, 24, 13897–13902.

143

Yang, Q.; Wang, Z. F.; Xi, W.; He, G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem. Commun. 2019, 101, 68–72.

144

Tai, Z. X.; Liu, Y. J.; Zhang, Q.; Zhou, T. F.; Guo, Z. P.; Liu, H. K.; Dou, S. X. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green. Energy Environ. 2017, 2, 278–284.

145

Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. Electrochemical alloying of lead in potassium-ion batteries. ACS Omega 2018, 3, 12195–12200.

146

Yan, C. L.; Gu, X.; Zhang, L.; Wang, Y.; Yan, L. T.; Liu, D. D.; Li, L. J.; Dai, P. C.; Zhao, X. B. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: Promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 2018, 6, 17371–17377.

147

Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao, N. Q. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 14309–14318.

148

Zhang, Y. F.; Li, M.; Huang, F. B.; Li, Y. S.; Xu, Y. Q.; Wang, F.; Yao, Q. R.; Zhou, H. Y.; Deng, J. Q. 3D porous Sb-Co nano­composites as advanced anodes for sodium-ion batteries and potassium-ion batteries. Appl. Surf. Sci. 2020, 499, 143907.

149

Wang, J.; Fan, L.; Liu, Z. M.; Chen, S. H.; Zhang, Q. F.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. G. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 2019, 13, 3703–3713.

150

Li, J. S.; Xu, X. J.; Yu, X. T.; Han, X.; Zhang, T.; Zuo, Y.; Zhang, C. Q.; Yang, D. W.; Wang, X.; Luo, Z. S. et al. Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries. ACS Appl. Mater. Inter. 2020, 12, 4414–4422.

151

He, X. D.; Liao, J. Y.; Wang, S.; Wang, J. R.; Liu, Z. H.; Ding, X.; Hu, Q.; Wen, Z. Y.; Chen, C. H. From nanomelting to nanobeads: Nanostructured SbxBi1−x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 27041–27047.

152

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

153

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

154

Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

155

Zhao, S. Q.; Dong, L. B.; Sun, B.; Yan, K.; Zhang, J. Q.; Wan, S. W.; He, F. R.; Munroe, P.; Notten, P. H. L.; Wang, G. X. K2Ti2O5@C microspheres with enhanced K+ intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 2020, 16, 1906131.

156

Niu, X. G.; Zhang, Y. C.; Tan, L. L.; Yang, Z.; Yang, J.; Liu, T.; Zeng, L.; Zhu, Y. J.; Guo, L. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 2019, 22, 160–167.

157

Li, N.; Zhang, F.; Tang, Y. B. Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 2018, 6, 17889–17895.

158

Li, Z. T.; Dong, Y. F.; Feng, J. Z.; Xu, T.; Ren, H.; Gao, C.; Li, Y. R.; Cheng, M. J.; Wu, W. T.; Wu, M. B. Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries. ACS Nano 2019, 13, 9227–9236.

159

Lee, G. W.; Park, B. H.; Nazarian-Samani, M.; Kim, Y. H.; Roh, K. C.; Kim, K. B. Magneli phase titanium oxide as a novel anode material for potassium-ion batteries. ACS Omega 2019, 4, 5304– 5309.

160

Xing, L. D.; Yu, Q. Y.; Bao, Y. P.; Chu, J. H.; Han, K.; Chong, S. K.; Lao, C. Y.; Lai, F. L.; Li, P.; Xi, K. et al. Strong (001) facet- induced growth of multi-hierarchical tremella-like Sn-doped V2O5 for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 25993–26001.

161

Li, Y. Q.; Shi, H.; Wang, S. B.; Zhou, Y. T.; Wen, Z.; Lang, X. Y.; Jiang, Q. Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 2019, 10, 4292.

162

Shimizu, M.; Yatsuzuka, R.; Koya, T.; Yamakami, T.; Arai, S. Tin oxides as a negative electrode material for potassium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 6865–6870.

163

Suo, G. Q.; Li, D.; Feng, L.; Hou, X. J.; Yang, Y. L.; Wang, W. SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. J. Electroanal. Chem. 2019, 833, 113–118.

164

Cao, K. Z.; Liu, H. Q.; Li, W. Y.; Han, Q. Q.; Zhang, Z.; Huang, K. J.; Jing, Q. S.; Jiao, L. F. CuO nanoplates for high-performance potassium-ion batteries. Small 2019, 15, 1901775.

165

Jin, T.; Li, H. X.; Li, Y.; Jiao, L. F.; Chen, J. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy 2018, 50, 462–467.

166

Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Direct growth of MoO2/reduced graphene oxide hollow sphere composites as advanced anode materials for potassium-ion batteries. ChemSusChem 2019, 12, 873–880.

167

Li, P. H.; Wang, W.; Gong, S.; Lv, F.; Huang, H. X.; Luo, M. C.; Yang, Y.; Yang, C.; Zhou, J. H.; Qian, C. et al. Hydrogenated Na2Ti3O7 epitaxially grown on flexible N‑doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Inter. 2018, 10, 37974–37980.

168

Li, Y. P.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Liu, T. Z.; Hu, J. H.; Liu, M. L. Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 2019, 59, 582–590.

169

Liu, Y.; He, D. L.; Tan, Q. W.; Wan, Q.; Han, K.; Liu, Z. W.; Li, P.; An, F. Q.; Qu, X. H. A synergetic strategy for an advanced electrode with Fe3O4 embedded in a 3D N-doped porous graphene framework and a strong adhesive binder for lithium/potassium ion batteries with an ultralong cycle lifespan. J. Mater. Chem. A 2019, 7, 19430– 19441.

170

Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao, N. Q. Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high- performance anode material for potassium-ion batteries. J. Power Sources 2019, 441, 227191.

171

Huang, Z.; Chen, Z.; Ding, S. S.; Chen, C. M.; Zhang, M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 2018, 219, 19–22.

172

Chong, S. K.; Wu, Y. F.; Liu, C. F.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Cao, G. Z. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 2018, 54, 106–115.

173

Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-performance all-vanadate Na-ion and K-ion full batteries. J. Mater. Chem. A 2019, 7, 19581– 19588.

174

Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.

175

Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66–95.

176

Li, W. D.; Wang, D. Z.; Gong, Z. J.; Yin, Z. M.; Guo, X. S.; Liu, J.; Mao, C. M.; Zhang, Z. H.; Li, G. C. A robust strategy for engineering Fe7S8/C hybrid nanocages reinforced by defect-rich MoS2 nanosheets for superior potassium-ion storage. ACS Nano 2020, 14, 16046– 16056.

177

Li, D. P.; Dai, L. N.; Ren, X. H.; Ji, F. J.; Sun, Q.; Zhang, Y. M.; Ci, L. J. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 2021, 14, 424–436.

178

Li, X.; Zhu, H. W. Two-dimensional MoS2: Properties, preparation, and applications. J. Materiom. 2015, 1, 33–44.

179

Dong, Y. L.; Xu, Y.; Li, W.; Fu, Q.; Wu, M. H.; Manske, E.; Kröger, J.; Lei, Y. Insights into the crystallinity of layer-structured transition metal dichalcogenides on potassium ion battery performance: A case study of molybdenum disulfide. Small 2019, 15, 1900497.

180

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

181

Zhang, J. Y.; Cui, P. X.; Gu, Y.; Wu, D. J.; Tao, S.; Qian, B.; Chu, W. S.; Song, L. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage. Adv. Mater. Interfaces 2019, 6, 1901066.

182

Rui, B. L.; Li, J. H.; Chang, L. M.; Wang, H. R.; Lin, L.; Guo, Y.; Nie, P. Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front. Energy Res. 2019, 7, 142.

183

Jia, B. R.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Yu, Q. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/ carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 2018, 6, 11147–11153.

184

Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.

185

Chong, S. K.; Sun, L.; Shu, C. Y.; Guo, S. W.; Liu, Y. N.; Wang, W.; Liu, H. K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868.

186

Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 "nano-rose" with expanded interlayers on graphene. Small 2017, 13, 1701471.

187

Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

188

Zhang, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2–N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305–9315.

189

Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage. J. Mater. Chem. A 2019, 7, 5760–5768.

190

Liu, Y. T.; Xiao, Y. Y.; Liu, F. S.; Han, P. Y.; Qin, G. H. Controlled building of mesoporous MoS2@MoO2-doped magnetic carbon sheets for superior potassium ion storage. J. Mater. Chem. A 2019, 7, 26818–26828.

191

Chen, Z.; Yin, D. G.; Zhang, M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 2018, 14, 1703818.

192

Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.

193

Lakshmi, V.; Chen, Y.; Mikhaylov, A. A.; Medvedev, A. G.; Sultana, I.; Rahman, M. M.; Lev, O.; Prikhodchenko, P. V.; Glushenkov, A. M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275.

194

Rehman, J.; Fan, X. F.; Zheng, W. T. Computational insight of monolayer SnS2 as anode material for potassium ion batteries. Appl. Surf. Sci. 2019, 496, 143625.

195

Fan, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.

196

Li, D. P.; Sun, Q.; Zhang, Y. M.; Chen, L. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Surface-confined SnS2@C@rGO as high- performance anode materials for sodium- and potassium-ion batteries. ChemSusChem 2019, 12, 2689–2700.

197

Miao, W. F.; Zhang, Y.; Li, H. T.; Zhang, Z. H.; Li, L.; Yu, Z.; Zhang, W. M. ZIF-8/ZIF-67-derived 3D amorphous carbon- encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A 2019, 7, 5504–5512.

198

Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS Quantum dot nanoclusters for high- energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

199

Yu, Q. Y.; He, J.; Qian, C.; Gao, Y. Z.; Wang, W.; Yin, G. P. CoS/ N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. J. Solid State Electrochem. 2019, 23, 27–32.

200

Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk–shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.

201

Xie, J. P.; Zhu, Y. Q.; Zhuang, N.; Lei, H.; Zhu, W. L.; Fu, Y.; Javed, M. S.; Li, J. L.; Mai, W. J. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 2018, 10, 17092–17098.

202

Yao, Q. Q.; Zhang, J. S.; Shi, X. L.; Deng, B. L.; Hou, K.; Zhao, Y.; Guan, L. H. Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/ potassium ion batteries. Electrochim. Acta 2019, 307, 118–128.

203

Luo, Y. S.; Tao, M. L.; Deng, J. H.; Zhan, R. M.; Guo, B. S.; Ma, Q. R.; Aslam, M. K.; Qi, Y. R.; Xu, M. W. Nanocubes composed of FeS2@C nanoparticles as advanced anode materials for K-ion storage. Inorg. Chem. Front. 2020, 7, 394–401.

204

Zhang, R. D.; Bao, J. Z.; Pan, Y. L.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604–2612.

205

Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P. B.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res. 2019, 12, 2997–3002.

206

Liu, Y. J.; Tai, Z. X.; Zhang, J.; Pang, W. K.; Zhang, Q.; Feng, H. F.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution- triggered one-step shear exfoliation. Nat. Commun. 2018, 9, 3645.

207

Li, T.; Zhang, Q. Advanced metal sulfide anode for potassium ion batteries. J. Energy Chem. 2018, 27, 373–374.

208

Jia, X. X.; Zhang, E. J.; Yu, X. Z.; Lu, B. G. Facile synthesis of copper sulfide nanosheet@graphene oxide for the anode of potassium-ion batteries. Energy Technol. 2020, 8, 1900987.

209

Xie, J. P.; Li, X. D.; Lai, H. J.; Zhao, Z. J.; Li, J. L.; Zhang, W. G.; Xie, W. G.; Liu, Y. M.; Mai, W. J. A Robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide- containing potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 14740–14747.

210

Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

211

Chu, J. H.; Yu, Q. Y.; Yang, D. X.; Xing, L. D.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Zhang, L.; Du, W. Y. et al. Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell "nano-crisps" for high-performance potassium-ion batteries. Appl. Mater. Today 2018, 13, 344–351.

212

Zeng, L. X.; Kang, B. Y.; Luo, F. Q.; Fang, Y. X.; Zheng, C.; Liu, J. B.; Liu, R. P.; Li, X. Y.; Chen, Q. H.; Wei, M. D. et al. Facile synthesis of ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon for high-performance half/full sodium-ion and potassium-ion batteries. Chem. –Eur. J. 2019, 25, 13411–13421.

213

Shen, Q.; Jiang, P. J.; He, H. C.; Chen, C. M.; Liu, Y.; Zhang, M. Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery–supercapacitor hybrid devices. Nanoscale 2019, 11, 13511–13520.

214

Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456.

215

Sannyal, A.; Zhang, Z. Q.; Gao, X. F.; Jang, J. Two-dimensional sheet of germanium selenide as an anode material for sodium and potassium ion batteries: First-principles simulation study. Comput. Mater. Sci. 2018, 154, 204–211.

216

He, C.; Zhang, J. H.; Zhang, W. X.; Li, T. T. GeSe/BP van der Waals heterostructures as promising anode materials for potassium-ion batteries. J. Phys. Chem. C 2019, 123, 5157–5163.

217

Zhou, Y.; Zhao, M.; Chen, Z. W.; Shi, X. M.; Jiang, Q. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys. Chem. Chem. Phys. 2018, 20, 30290–30296.

218

Yu, H. X.; Cheng, X.; Xia, M. T.; Liu, T. T.; Ye, W. Q.; Zheng, R. T.; Long, N. B.; Shui, M.; Shu, J. Pretreated commercial TiSe2 as an insertion-type potassium container for constructing "Rocking-Chair" type potassium ion batteries. Energy Storage Mater. 2019, 22, 154–159.

219

Wu, M. G.; Yang, J. L.; Ng, D. H. L.; Ma, J. M. Rhenium diselenide anchored on reduced graphene oxide as anode with cyclic stability for potassium-ion battery. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900329.

220

Yu, Q. Y.; Jiang, B.; Hu, J.; Lao, C. Y.; Gao, Y. Z.; Li, P. H.; Liu, Z. W.; Suo, G. Q.; He, D. L.; Wang, W. et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries. Adv. Sci. 2018, 5, 1800782.

221

Etogo, C. A.; Huang, H. W.; Hong, H.; Liu, G. X.; Zhang, L. Metal- organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020, 24, 167–176.

222

Liu, Z. W.; Han, K.; Li, P.; Wang, W.; He, D. L.; Tan, Q. W.; Wang, L. Y.; Li, Y.; Qin, M. L.; Qu, X. H. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 2019, 11, 96.

223

Chu, J. H.; Wang, W.; Yu, Q. Y.; Lao, C. Y.; Zhang, L.; Xi, K.; Han, K.; Xing, L. D.; Song, L.; Wang, M. et al. Open ZnSe/C nanocages: Multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. J. Mater. Chem. A 2020, 8, 779–788.

224

Hu, Y.; Lu, T. T.; Zhang, Y.; Sun, Y. W.; Liu, J. L.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part. Part. Syst. Charact. 2019, 36, 1900199.

225

Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic grapheme- like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

226

Tian, H. J.; Yu, X. C.; Shao, H. Z.; Dong, L. B.; Chen, Y.; Fang, X. Q.; Wang, C. Y.; Han, W. Q.; Wang, G. X. Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 2019, 9, 1901560.

227

Luo, Y. S.; Han, J.; Ma, Q. R.; Zhan, R. M.; Zhang, Y. Q.; Xu, Q. J.; Xu, M. W. Exploration of NbSe2 flakes as reversible host materials for sodium-ion and potassium-ion batteries. Chem. Select 2018, 3, 9807–9811.

228

Verma, R.; Didwal, P. N.; Ki, H. S.; Cao, G. Z.; Park, C. J. SnP3/ carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl. Mater. Inter. 2019, 11, 26976–26984.

229

Yang, F. H.; Hao, J. N.; Long, J.; Liu, S. L.; Zheng, T.; Lie, W.; Chen, J.; Guo, Z. P. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv. Energy Mater. 2021, 11, 2003346.

230

Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534–1547.

231

Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

232

Zhao, X. X.; Wang, W. H.; Hou, Z.; Wei, G. J.; Yu, Y. K.; Zhang, J.; Quan, Z. W. SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem. Eng. J. 2019, 370, 677–683.

233

Yang, W. W.; Zhang, J. Y.; Huo, D.; Sun, S.; Tao, S.; Wang, Z. C.; Wang, J.; Wu, D. J.; Qian, B. Facile synthesis of tin phosphide/ reduced graphene oxide composites as anode material for potassium-ion batteries. Ionics 2019, 25, 4795–4803.

234

Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

235

Li, W. T.; Yan, B. J.; Fan, H. W.; Zhang, C.; Xu, H. Y.; Cheng, X. L.; Li, Z. L.; Jia, G. X.; An, S. L.; Qiu, X. P. FeP/C composites as an anode material for K-ion batteries. ACS Appl. Mater. Inter. 2019, 11, 22364–22370.

236

Wang, Y. X.; Zhang, Z. Y.; Wang, G. X.; Yang, X. Y.; Sui, Y. M.; Du, F.; Zou, B. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4, 1394–1401.

237

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

238

Sun, N.; Zhu, Q. Z.; Anasori, B.; Zhang, P.; Liu, H.; Gogotsi, Y.; Xu, B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 2019, 29, 1906282.

239

Tian, Y.; An, Y. L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9716–9725.

240

Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.

241

Tao, M. L.; Du, G. Y.; Zhang, Y. Q.; Gao, Q.; Liu, D. Y.; Luo, Y. S.; Jiang, J.; Bao, S. J.; Xu, M. W. TiOxNy nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. Chem. Eng. J. 2019, 369, 828–833.

242

Li, C.; Hu, X. S.; Hu, B. W. Cobalt(Ⅱ) dicarboxylate-based metal- organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 2017, 253, 439–444.

243

Wu, H. Y.; Yu, Q. Y.; Lao, C. Y.; Qin, M. L.; Wang, W.; Liu, Z. W.; Man, C.; Wang, L. Y.; Jia, B. R.; Qu, X. H. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 2019, 18, 43–50.

244

Katorova, N. S.; Fedotov, S. S.; Rupasov, D. P.; Luchinin, N. D.; Delattre, B.; Chiang, Y. M.; Abakumov, A. M.; Stevenson, K. J. Effect of concentrated diglyme-based electrolytes on the electro­chemical performance of potassium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6051–6059.

Nano Research
Pages 4442-4470
Cite this article:
Ma L, Lv Y, Wu J, et al. Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14(12): 4442-4470. https://doi.org/10.1007/s12274-021-3439-3
Topics:

1161

Views

96

Crossref

97

Web of Science

97

Scopus

11

CSCD

Altmetrics

Received: 06 February 2021
Revised: 03 March 2021
Accepted: 04 March 2021
Published: 14 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return