AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Si nanomebranes: Material properties and applications

Arijit SarkarYongjun LeeJong-Hyun Ahn( )
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Silicon (Si) has widely been used as an essential material in the modern semiconductor industry. Recently, new attempts have been actively made to apply Si to a variety of fields such as flexible electronic devices and biosensors by manufacturing Si nanomembranes (NMs) having nanometer thickness. In particular, as the thickness of Si is reduced to a nanometer scale, its mechanical, electrical, and optical properties differ from that of its bulk form, which provides opportunities for the development of new conceptual devices. In this review, we present recent advances in Si NM technology that exhibit functional features different from the bulk materials. In addition, we discuss the opportunities and current challenges related to this field.

References

[1]
Cavallo, F.; Lagally, M. G. Semiconductors turn soft: Inorganic nanomembranes. Soft Matter 2010, 6, 439-455.
[2]
Mack, S.; Meitl, M. A.; Baca, A. J.; Zhu, Z.-T.; Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 2006, 88, 213101.
[3]
Hu, J. J.; Li, L.; Lin, H. T.; Zhang, P.; Zhou, W. D.; Ma, Z. Q. Flexible integrated photonics: Where materials, mechanics and optics meet [invited]. Opt. Mater. Express 2013, 3, 1313-1331.
[4]
Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nanosci. Nat. Mater. 2007, 6, 841-850.
[5]
Paskiewicz, D. M.; Savage, D. E.; Holt, M. V.; Evans, P. G.; Lagally, M. G. Nanomembrane-based materials for group IV semiconductor quantum electronics. Sci. Rep. 2014, 4, 4218.
[6]
Yin, L.; Sheng, X. Nonconventional biosensors based on nanomembrane materials. In Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wang, X. M.; Ramalingam, M.; Kong, X. D.; Zhao, L. Y., Eds.; Wiley-VCH Verlag GmbH & Co. KGa: Weinheim, Germany, 2018; pp 241-257.
[7]
Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598-4810.
[8]
Ying, M.; Bonifas, A. P.; Lu, N. S.; Su, Y. W.; Li, R.; Cheng, H. Y.; Ameen, A.; Huang, Y. G.; Rogers, J. A. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012, 23, 344004.
[9]
Lagally, M. G. Silicon nanomembranes. MRS Bull. 2007, 32, 57-63.
[10]
Zhou, W. D.; Ma, Z. Q. Breakthroughs in photonics 2012: Breakthroughs in nanomembranes and nanomembrane lasers. IEEE Photonics J. 2013, 5, 0700707.
[11]
Zhou, H.; Seo, J. H.; Paskiewicz, D. M.; Zhu, Y.; Celler, G. K.; Voyles, P. M.; Zhou, W. D.; Lagally, M. G.; Ma, Z. Q. Fast flexible electronics with strained silicon nanomembranes. Sci. Rep. 2013, 3, 1291.
[12]
Clausen, A. M.; Paskiewicz, D. M.; Sadeghirad, A.; Jakes, J.; Savage, D. E.; Stone, D. S.; Liu, F.; Lagally, M. G. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films. Extreme Mech. Lett. 2014, 1, 9-16.
[13]
Katiyar, A. K.; Davidson, A. A.; Jang, H.; Hwangbo, Y.; Han, B.; Lee, S.; Hagiwara, Y.; Shimada, T.; Hirakata, H.; Kitamura, T. et al. Ultrasoft silicon nanomembranes: Thickness-dependent effective elastic modulus. Nanoscale 2019, 11, 15184-15194.
[14]
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208-212.
[15]
Zhang, P. P.; Tevaarwerk, E.; Park, B. N.; Savage, D. E.; Celler, G. K.; Knezevic, I.; Evans, P. G.; Eriksson, M. A.; Lagally, M. G. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 2006, 439, 703-706.
[16]
Schmidt, O. G.; Eberl, K. Into nanotubes. 2001, 410, 2001.
[17]
Baca, A. J.; Meitl, M. A.; Ko, H. C.; Mack, S.; Kim, H. S.; Dong, J.; Ferreira, P. M.; Rogers, J. A. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 2007, 17, 3051-3062.
[18]
Cavallo, F.; Lagally, M. G. Semiconductor nanomembranes: A platform for new properties via strain engineering. Nanoscale Res. Lett. 2012, 7, 628.
[19]
Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem., Int. Ed. 2008, 47, 5524-5542.
[20]
Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905-3911.
[21]
Seo, J. H.; Zhang, K.; Kim, M.; Zhou, W. D.; Ma, Z. Q. High-performance flexible BICMOS electronics based on single-crystal Si nanomembrane. npj Flex. Electron. 2017, 1, 1.
[22]
Qin, G. X.; Yuan, H. C.; Yang, H. J.; Zhou, W. D.; Ma, Z. Q. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate. Semicond. Sci. Technol. 2010, 26, 025005.
[23]
Seo, J. H.; Zhang, Y.; Yuan, H. C.; Wang, Y. X.; Zhou, W. D.; Ma, J. G.; Ma, Z. Q.; Qin, G. X. Investigation of various mechanical bending strains on characteristics of flexible monocrystalline silicon nanomembrane diodes on a plastic substrate. Microelectron. Eng. 2013, 110, 40-43.
[24]
Seo, J. H.; Park, J.; Zhao, D. Y.; Yang, H. J.; Zhou, W. D.; Ju, B. K.; Ma, Z. Q. Large-area printed broadband membrane reflectors by laser interference lithography. IEEE Photonics J. 2013, 5, 2200106.
[25]
Won, S. M.; Kim, H. S.; Lu, N. S.; Kim, D. G.; Del Solar, C.; Duenas, T.; Ameen, A.; Rogers, J. A. Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates. IEEE Trans. Electron Devices 2011, 58, 4074-4078.
[26]
Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757-760.
[27]
Kim, B. H.; Lee, J.; Won, S. M.; Xie, Z. Q.; Chang, J. K.; Yu, Y.; Cho, Y. K.; Jang, H.; Jeong, J. Y.; Lee, Y. et al. Three-dimensional silicon electronic systems fabricated by compressive buckling process. ACS Nano 2018, 12, 4164-4171.
[28]
Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45-53.
[29]
Lee, W.; Jang, H.; Jang, B.; Kim, J. H.; Ahn, J. H. Stretchable Si logic devices with graphene interconnects. Small 2015, 11, 6272-6277.
[30]
Kim, D.-H.; Ahn, J.-H.; Choi, W. M.; Kim, H.-S.; Kim, T.-H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits Science 2008, 320, 507-511.
[31]
Guo, Q. L.; Di, Z. F.; Lagally, M. G.; Mei, Y. F. Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Mater. Sci. Eng. R Rep. 2018, 128, 1-31.
[32]
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488-492.
[33]
Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603-1607.
[34]
Menard, E.; Lee, K. J.; Khang, D. Y.; Nuzzo, R. G.; Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 2004, 84, 5398-5400.
[35]
Shuai, Y. C.; Zhao, D. Y.; Singh Chadha, A.; Seo, J. H.; Yang, H. J.; Fan, S. H.; Ma, Z. Q.; Zhou, W. D. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement. Appl. Phys. Lett. 2013, 103, 241106.
[36]
Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378-384.
[37]
Qin, G. X.; Tu, G. P.; Cai, T. H.; Ma, J. G.; Ma, Z. Q. Fabrication, characterisation and modelling of fast flexible semiconductor nanomembrane electronics. Int. J. Nanotechnol. 2014, 11, 190-206.
[38]
Kim, D.-H.; Kim, Y.-S.; Wu, J.; Liu, Z. J.; Song, J. Z.; Kim, H.-S.; Huang, Y. G.; Hwang, K.-C.; Rogers, J. A. Flexible electronics: Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper (Adv. Mater. 36/2009). Adv. Mater. 2009, 21, NA-NA.
[39]
Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211-216.
[40]
Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773-2778.
[41]
Zhang, K.; Jung, Y. H.; Mikael, S.; Seo, J. H.; Kim, M.; Mi, H. Y.; Zhou, H.; Xia, Z. Y.; Zhou, W. D.; Gong, S. Q. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 2017, 8, 1782.
[42]
Park, M.; Kim, M. S.; Park, Y. K.; Ahn, J. H. Si membrane based tactile sensor with active matrix circuitry for artificial skin applications. Appl. Phys. Lett. 2015, 106, 043502.
[43]
Yang, H. J.; Zhao, D. Y.; Chuwongin, S.; Seo, J. H.; Yang, W. Q.; Shuai, Y. C.; Berggren, J.; Hammar, M.; Ma, Z. Q.; Zhou, W. D. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photonics 2012, 6, 615-620.
[44]
Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.
[45]
Choi, W. M.; Song, J. Z.; Khang, D. Y.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 2007, 7, 1655-1663.
[46]
Kang, S. K.; Hwang, S. W.; Yu, S.; Seo, J. H.; Corbin, E. A.; Shin, J.; Wie, D. S.; Bashir, R.; Ma, Z. Q.; Rogers, J. A. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 2015, 25, 1789-1797.
[47]
Lu, L. Y.; Yang, Z. J.; Meacham, K.; Cvetkovic, C.; Corbin, E. A.; Vázquez-Guardado, A.; Xue, M. T.; Yin, L.; Boroumand, J.; Pakeltis, G. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 2018, 8, 1703035.
[48]
Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71-76.
[49]
Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977-981.
[50]
Qin, G. X.; Yang, L. C.; Seo, J. H.; Yuan, H. C.; Celler, G. K.; Ma, J. G.; Ma, Z. Q. Experimental characterization and modeling of the bending strain effect on flexible microwave diodes and switches on plastic substrate. Appl. Phys. Lett. 2011, 99, 243104.
[51]
Zhou, W. D.; Ma, Z. Q.; Chuwongin, S.; Shuai, Y. C.; Seo, J. H.; Zhao, D. Y.; Yang, H. J.; Yang, W. Q. Semiconductor nanomembranes for integrated silicon photonics and flexible Photonics. Opt. Quantum Electron. 2012, 44, 605-611.
[52]
Rodrigues, D.; Barbosa, A. I.; Rebelo, R.; Kwon, I. K.; Reis, R. L.; Correlo, V. M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79.
[53]
Ma, Y. J.; Feng, X.; Rogers, J. A.; Huang, Y. G.; Zhang, Y. H. Design and application of “J-shaped” stress-strain behavior in stretchable electronics: A review. Lab Chip 2017, 17, 1689-1704.
[54]
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208-212.
[55]
Salleo, A.; Wong, W. S. Flexible Electronics: Materials and Applications; Springer: Boston, MA, USA, 2009; pp 1-28.
[56]
Viventi, J.; Kim, D. H.; Moss, J. D.; Kim, Y. S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J. L.; Huang, Y. G.; Callans, D. J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2010, 2, 24ra22.
[57]
Cho, M.; Seo, J. H.; Park, D. W.; Zhou, W. D.; Ma, Z. Q. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions. Appl. Phys. Lett. 2016, 108, 233505.
[58]
Zhang, K.; Seo, J. H.; Zhou, W. D.; Ma, Z. Q. Fast flexible electronics using transferrable silicon nanomembranes. J. Phys. D. Appl. Phys. 2012, 45, 143001.
[59]
Liu, D.; Zhou, W. D.; Ma, Z. Q. Semiconductor nanomembrane-based light-emitting and photodetecting devices. Photonics 2016, 3, 40.
[60]
Kim, M.; Mi, H. Y.; Cho, M.; Seo, J. H.; Zhou, W. D.; Gong, S. Q.; Ma, Z. Q. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film. Appl. Phys. Lett. 2015, 106, 212107.
[61]
Yang, H. J.; Zhao, D. Y.; Liu, S.; Liu, Y. H.; Seo, J. H.; Ma, Z. Q.; Zhou, W. D. Transfer printed nanomembranes for heterogeneously integrated membrane photonics. Photonics 2015, 2, 1081-1100.
[62]
Tao, H.; Brenckle, M. A.; Yang, M. M.; Zhang, J. D.; Liu, M. K.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; McAlpine, M. C.; Rogers, J. A. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 2012, 24, 1067-1072.
[63]
Jang, H.; Lee, W.; Won, S. M.; Ryu, S. Y.; Lee, D.; Koo, J. B.; Ahn, S. D.; Yang, C. W.; Jo, M. H.; Cho, J. H. et al. Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates. Nano Lett. 2013, 13, 5600-5607.
[64]
Shergujri, M. A.; Jaman, R.; Baruah, A. J.; Mahato, M.; Pyngrope, D.; Singh, L. R.; Gogoi, M. Paper-based sensors for biomedical applications. In Biomedical Engineering and Its Applications in Healthcare; Paul, S., Ed.; Springer: Singapore, 2019; pp 355-376.
[65]
Rogers, J. A.; Ahn, J. H. Silicon Nanomembranes: Fundamental Science and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016.
[66]
Kim, D. H.; Lu, N. S.; Ghaffari, R.; Kim, Y. S.; Lee, S. P.; Xu, L. Z.; Wu, J.; Kim, R. H.; Song, J. Z.; Liu, Z. J. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316-323.
[67]
Hwang, S. W.; Huang, X.; Seo, J. H.; Song, J. K.; Kim, S.; Hage-Ali, S.; Chung, H. J.; Tao, H.; Omenetto, F. G.; Ma, Z. Q. et al. Materials for bioresorbable radio frequency electronics. Adv. Mater. 2013, 25, 3526-3531.
[68]
Hwang, S. W.; Park, G.; Edwards, C.; Corbin, E. A.; Kang, S. K.; Cheng, H. Y.; Song, J. K.; Kim, J. H.; Yu, S.; Ng, J. et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 2014, 8, 5843-5851.
[69]
Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782-791.
[70]
Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37-46.
[71]
Hwang, S. W.; Lee, C. H.; Cheng, H. Y.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801-2808.
[72]
Sun, Y. G.; Choi, W. M.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 2006, 1, 201-207.
[73]
Xia, F.; Kim, S. B.; Cheng, H. Y.; Lee, J. M.; Song, T.; Huang, Y. G.; Rogers, J. A.; Paik, U.; Park, W. I. Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett. 2013, 13, 3340-3346.
[74]
Lee, W.; Hwangbo, Y.; Kim, J. H.; Ahn, J. H. Mobility enhancement of strained Si transistors by transfer printing on plastic substrates. NPG Asia Mater. 2016, 8, e256.
[75]
Keum, H.; Carlson, A.; Ning, H. L.; Mihi, A.; Eisenhaure, J. D.; Braun, P. V.; Rogers, J. A.; Kim, S. Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication. J. Micromech. Microeng. 2012, 22, 055018.
[76]
Ko, H. C.; Baca, A. J.; Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 2006, 6, 2318-2324.
[77]
Carlson, A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24, 5284-5318.
[78]
Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33-38.
[79]
Das, T.; Jang, H.; Lee, J. B.; Chu, H.; Kim, S. D.; Ahn, J. H. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures. 2D Mater. 2015, 2, 044006.
[80]
Gomes, M. da M.; Quinhones, M. S.; Engelhardt, E.; Lerner, R. M.; Andrés, A.; Pereira, P. M. C. de M.; Miguens, S.; Nacional, S.; Ministério da Educação e Ciência; Berger, J. et al. We are Intechopen, the world’ s leading publisher of open access books built by scientists, for scientists top 1%. Intech 2013, 15, 13.
[81]
Torres Sevilla, G. A.; Ghoneim, M. T.; Fahad, H.; Rojas, J. P.; Hussain, A. M.; Hussain, M. M. Flexible nanoscale high-performance FinFETs. ACS Nano 2014, 8, 9850-9856.
[82]
Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G. Large-area, selective transfer of microstructured silicon: A printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 2005, 17, 2332-2336.
[83]
Seo, J. H.; Yuan, H. C.; Sun, L.; Zhou, W. D.; Ma, Z. Q. Transferrable single-crystal silicon nanomembranes and their application to flexible microwave systems. J. Inf. Disp. 2011, 12, 109-113.
[84]
Menon, L.; Yang, H. J.; Cho, S. J.; Mikael, S.; Ma, Z. Q.; Zhou, W. D. Transferred flexible three-color silicon membrane photodetector arrays. IEEE Photonics J. 2015, 7, 6800106.
[85]
Sun, L.; Qin, G. X.; Seo, J. H.; Celler, G. K.; Zhou, W. D.; Ma, Z. Q. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 2010, 6, 2553-2557.
[86]
Yang, H. J.; Zhao, D. Y.; Seo, J. H.; Chuwongin, S.; Kim, S.; Rogers, J. A.; Ma, Z. Q.; Zhou, W. D. Broadband membrane reflectors on glass. IEEE Photonics Technol. Lett. 2012, 24, 476-478.
[87]
Feng, X.; Meitl, M. A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A. Competing fracture in kinetically controlled transfer printing. Langmuir 2007, 23, 12555-12560.
[88]
Carlson, A.; Kim-Lee, H. J.; Wu, J.; Elvikis, P.; Cheng, H. Y.; Kovalsky, A.; Elgan, S.; Yu, Q. M.; Ferreira, P. M.; Huang, Y. G. et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 2011, 98, 264104.
[89]
Carlson, A.; Wang, S. D.; Elvikis, P.; Ferreira, P. M.; Huang, Y. G.; Rogers, J. A. Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing. Adv. Funct. Mater. 2012, 22, 4476-4484.
[90]
Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977-981.
[91]
Khang, D. Y.; Rogers, J. A.; Lee, H. H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 2009, 19, 1526-1536.
[92]
Jiang, H. Q.; Khang, D. Y.; Song, J. Z.; Sun, Y. G.; Huang, Y. G.; Rogers, J. A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA 2007, 104, 15607-15612.
[93]
Gelinck, G. H.; Huitema, H. E. A.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J. B. P. H.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 2004, 3, 106-110.
[94]
Sun, Y.; Kumar, V.; Adesida, I.; Rogers, J. A. Buckled and wavy ribbons of GaAs for high-performance electronics on elastomeric substrates. Adv. Mater. 2006, 18, 2857-2862.
[95]
Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887-4892.
[96]
Xu, S.; Yan, Z.; Jang, K. I.; Huang, W.; Fu, H. R.; Kim, J.; Wei, Z. J.; Flavin, M.; McCracken, J.; Wang, R. H. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015, 347, 154-159.
[97]
Babaee, S.; Shim, J.; Weaver, J. C.; Chen, E. R.; Patel, N.; Bertoldi, K. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 2013, 25, 5044-5049.
[98]
Roberts, M. M.; Klein, L. J.; Savage, D. E.; Slinker, K. A.; Friesen, M.; Celler, G.; Eriksson, M. A.; Lagally, M. G. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 2006, 5, 388-393.
[99]
Lee, S.; Kim, K.; Dhakal, K. P.; Kim, H.; Yun, W. S.; Lee, J.; Cheong, H.; Ahn, J. H. Thickness-dependent phonon renormalization and enhanced Raman scattering in ultrathin silicon nanomembranes. Nano Lett. 2017, 17, 7744-7750.
[100]
Sarkar, A.; Bar, R.; Singh, S.; Chowdhury, R. K.; Bhattacharya, S.; Das, A. K.; Ray, S. K. Size-tunable electroluminescence characteristics of quantum confined Si nanocrystals embedded in Si-rich oxide matrix. Appl. Phys. Lett. 2020, 116, 231105.
[101]
Brus, L. Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quantum Electron. 1986, 22, 1909-1914.
[102]
Groenewold, J. Wrinkling of plates coupled with soft elastic media. Phys. A Stat. Mech. Appl. 2001, 298, 32-45.
[103]
Sarkar, A.; Katiyar, A. K.; Mukherjee, S.; Singh, S.; Singh, S. K.; Das, A. K.; Ray, S. K. Geometry controlled white light emission and extraction in CdS/black-Si conical heterojunctions. ACS Appl. Electron. Mater. 2019, 1, 25-33.
[104]
Ray, S. K.; Katiyar, A. K.; Raychaudhuri, A. K. One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—A review. Nanotechnology 2017, 28, 092001.
[105]
Cho, M.; Seo, J. H.; Lee, J.; Zhao, D. Y.; Mi, H. Y.; Yin, X.; Kim, M.; Wang, X. D.; Zhou, W. D.; Ma, Z. Q. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes. Appl. Phys. Lett. 2015, 106, 181107.
[106]
Zhou, W. D.; Zhao, D. Y.; Shuai, Y. C.; Yang, H. J.; Chuwongin, S.; Chadha, A.; Seo, J. H.; Wang, K. X.; Liu, V.; Ma, Z. Q. et al. Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron. 2014, 38, 1-74.
[107]
Zhao, D. Y.; Yang, H. J.; Ma, Z. Q.; Zhou, W. D. Polarization independent broadband reflectors based on cross-stacked gratings. Opt. Express 2011, 19, 9050-9055.
[108]
Shuai, Y. C.; Zhao, D. Y.; Medhi, G.; Peale, R.; Ma, Z. Q.; Buchwald, W.; Soref, R.; Zhou, W. D. Fano-resonance photonic crystal membrane reflectors at mid- and far-infrared. IEEE Photonics J. 2013, 5, 4700206.
[109]
Shuai, Y. C.; Zhao, D. Y.; Tian, Z. B.; Seo, J. H.; Plant, D. V.; Ma, Z. Q.; Fan, S. H.; Zhou, W. D. Double-layer Fano resonance photonic crystal filters. Opt. Express 2013, 21, 24582-24589.
[110]
Qiang, Z. X.; Yang, H. J.; Chuwongin, S.; Zhao, D. Y.; Ma, Z. Q.; Zhou, W. D. Design of Fano broadband reflectors on SOI. IEEE Photonics Technol. Lett. 2010, 22, 1108-1110.
[111]
Cho, M.; Seo, J. H.; Zhao, D. Y.; Lee, J.; Xiong, K. L.; Yin, X.; Liu, Y. H.; Liu, S. C.; Kim, M.; Kim, T. J. et al. Amorphous Si/SiO2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes. J. Vac. Sci. Technol. B 2016, 34, 040601.
[112]
Liu, V.; Povinelli, M.; Fan, S. H. Resonance-enhanced optical forces between coupled photonic crystal slabs. Opt. Express 2009, 17, 21897-21909.
[113]
Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45-53.
[114]
Peng, W. N.; Aksamija, Z.; Scott, S. A.; Endres, J. J.; Savage, D. E.; Knezevic, I.; Eriksson, M. A.; Lagally, M. G. Probing the electronic structure at semiconductor surfaces using charge transport in nanomembranes. Nat. Commun. 2013, 4, 1339.
[115]
Peng, W. N.; Zamiri, M.; Scott, S. A.; Cavallo, F.; Endres, J. J.; Knezevic, I.; Eriksson, M. A.; Lagally, M. G. Electronic transport in hydrogen-terminated Si(001) nanomembranes. Phys. Rev. Appl. 2018, 9, 024037.
[116]
Song, E. M.; Guo, Z. X.; Li, G. D.; Liao, F. Y.; Li, G. J.; Du, H. N.; Schmidt, O. G.; Kim, M.; Yi, Y.; Bao, W. Z. et al. Thickness-dependent electronic transport in ultrathin, single crystalline silicon nanomembranes. Adv. Electron. Mater. 2019, 5, 1900232.
[117]
Thomsen, C.; Strait, J.; Vardeny, Z.; Maris, H. J.; Tauc, J.; Hauser, J. J. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 1984, 53, 989-992.
[118]
Chen, I. J.; Mante, P. A.; Chang, C. K.; Yang, S. C.; Chen, H. Y.; Huang, Y. R.; Chen, L. C.; Chen, K. H.; Gusev, V.; Sun, C. K. Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons. Nano Lett. 2014, 14, 1317-1323.
[119]
Major, T. A.; Lo, S. S.; Yu, K.; Hartland, G. V. Time-resolved studies of the acoustic vibrational modes of metal and semiconductor Nano-objects. J. Phys. Chem. Lett. 2014, 5, 866-874.
[120]
Bartels, A.; Cerna, R.; Kistner, C.; Thoma, A.; Hudert, F.; Janke, C.; Dekorsy, T. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 2007, 78, 035107.
[121]
Cuffe, J.; Ristow, O.; Chávez, E.; Shchepetov, A.; Chapuis, P. O.; Alzina, F.; Hettich, M.; Prunnila, M.; Ahopelto, J.; Dekorsy, T. et al. Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Phys. Rev. Lett. 2013, 110, 095503.
[122]
Sarkar, A.; Katiyar, A. K.; Mukherjee, S.; Ray, S. K. Enhanced UV-visible photodetection characteristics of a flexible Si membrane-Zno heterojunction utilizing piezo-phototronic effect. J. Phys. D. Appl. Phys. 2017, 50, 145104.
[123]
Sarkar, A.; Katiyar, A. K.; Das, A. K.; Ray, S. K. Si membrane-ZnO heterojunction-based broad band visible light emitting diode for flexible optoelectronic devices. Flex. Print. Electron. 2018, 3, 025004.
[124]
Zhao, D.; Yang, H.; Chuwongin, S.; Seo, J. H.; Ma, Z.; Zhou, W. Design of photonic crystal membrane-reflector-based VCSELs. IEEE Photonics J. 2012, 4, 2169-2175.
[125]
Zhao, D. Y.; Yang, H. J.; Seo, J. H.; Ma, Z. Q.; Zhou, W. D. Design and characterization of photonic crystal membrane reflector based vertical cavity surface emitting lasers on silicon. Rev. Nanosci. Nanotechnol. 2014, 3, 77-87.
[126]
Huang, X.; Liu, Y. H.; Kong, G. W.; Seo, J. H.; Ma, Y. J.; Jang, K. I.; Fan, J. A.; Mao, S. M.; Chen, Q. W.; Li, D. Z. et al. Epidermal radio frequency electronics for wireless power transfer. Microsyst. Nanoeng. 2016, 2, 16052.
[127]
Seo, J. H.; Ling, T.; Gong, S. Q.; Zhou, W. D.; Ma, A. L.; Guo, L. J.; Ma, Z. Q. Fast flexible transistors with a nanotrench structure. Sci. Rep. 2016, 6, 24771.
[128]
Qin, G. X.; Yuan, H. C.; Celler, G. K.; Ma, J. G.; Ma, Z. Q. RF model of flexible microwave switches employing single-crystal silicon nanomembranes on a plastic substrate. Microelectron. Eng. 2012, 95, 21-25.
[129]
Qin, G. X.; Yuan, H. C.; Celler, G. K.; Zhou, W. D.; Ma, J. G.; Ma, Z. Q. RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate. Microelectron. J. 2011, 42, 509-514.
[130]
Qin, G. X.; Seo, J. H.; Zhang, Y.; Zhou, H.; Zhou, W. D.; Wang, Y. X.; Ma, J. G.; Ma, Z. Q. RF characterization of gigahertz flexible silicon thin-film transistor on plastic substrates under bending conditions. IEEE Electron Device Lett. 2013, 34, 262-264.
[131]
Qin, G. X.; Yan, Y. X.; Jiang, N. Y.; Ma, J. G.; Ma, P. X.; Racanelli, M.; Ma, Z. Q. RF characteristics of proton radiated large-area SiGe HBTs at extreme temperatures. Microelectron. Reliab. 2012, 52, 2568-2571.
[132]
Menon, L.; Yang, H.; Cho, S. J.; Mikael, S.; Ma, Z.; Zhou, W. Transferred flexible three-color silicon membrane photodetector arrays. IEEE Photonics Journal. 2015, 7, 1-6.
[133]
Das, T.; Chen, X.; Jang, H.; Oh, I. K.; Kim, H.; Ahn, J. H. Highly flexible hybrid CMOS Inverter based on Si nanomembrane and molybdenum disulfide. Small 2016, 12, 5720-5727.
[134]
Li, G. J.; Ma, Z.; You, C. Y.; Huang, G. S.; Song, E. M.; Pan, R. B.; Zhu, H.; Xin, J. Q.; Xu, B. R.; Lee, T. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 2020, 6, eaaz6511.
[135]
Hekmatshoar, B.; Cherenack, K. H.; Kattamis, A. Z.; Long, K.; Wagner, S.; Sturm, J. C. Highly stable amorphous-silicon thin-film transistors on clear plastic. Appl. Phys. Lett. 2008, 93, 032103.
[136]
Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507-511.
[137]
Xu, C. H.; Pan, R. B.; Guo, Q. L.; Wu, X.; Li, G. J.; Huang, G. S.; An, Z. H.; Li, X. L.; Mei, Y. F. Ultrathin silicon nanomembrane in a tubular geometry for enhanced photodetection. Adv. Opt. Mater. 2019, 7, 1900823.
[138]
Jang, H.; Kim, J.; Kim, M. S.; Cho, J. H.; Choi, H.; Ahn, J. H. Observation of the inverse giant piezoresistance effect in silicon nanomembranes probed by ultrafast terahertz spectroscopy. Nano Lett. 2014, 14, 6942-6948.
[139]
Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95-99.
[140]
Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
[141]
Won, S. M.; Kim, H. S.; Lu, N. S.; Kim, D. G.; Del Solar, C.; Duenas, T.; Ameen, A.; Rogers, J. A. Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates. IEEE Trans. Electron Devices 2011, 58, 4074-4078.
[142]
Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640-1644.
[143]
Maheshwari, V.; Saraf, R. Tactile devices to sense touch on a par with a human finger. Angew. Chem., Int. Ed. 2008, 47, 7808-7826.
[144]
Ying, M.; Bonifas, A. P.; Lu, N. S.; Su, Y. W.; Li, R.; Cheng, H. Y.; Ameen, A.; Huang, Y. G.; Rogers, J. A. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012, 23, 344004.
[145]
Lee, Y. K.; Yu, K. J.; Song, E. M.; Barati Farimani, A.; Vitale, F.; Xie, Z. Q.; Yoon, Y.; Kim, Y.; Richardson, A.; Luan, H. W. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 2017, 11, 12562-12572.
[146]
Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0038.
[147]
Hernandez, H. L.; Kang, S. K.; Lee, O. P.; Hwang, S. W.; Kaitz, J. A.; Inci, B.; Park, C. W.; Chung, S.; Sottos, N. R.; Moore, J. S. et al. Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 2014, 26, 7637-7642.
[148]
Shiri, D.; Kong, Y. F.; Buin, A.; Anantram, M. P. Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 2008, 93, 073114.
[149]
Hong, K. H.; Kim, J.; Lee, S. H.; Shin, J. K. Strain-driven electronic band structure modulation of Si nanowires. Nano Lett. 2008, 8, 1335-1340.
[150]
Zhou, M.; Liu, Z.; Wang, Z. F.; Bai, Z. Q.; Feng, Y. P.; Lagally, M. G.; Liu, F. Strain-engineered surface transport in Si(001): Complete isolation of the surface state via tensile strain. Phys. Rev. Lett. 2013, 111, 246801.
[151]
Katiyar, A. K.; Thai, K. Y.; Yun, W. S.; Lee, J.; Ahn, J. H. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci. Adv. 2020, 6, eabb0576.
[152]
Seo, J. H.; Zhang, K.; Kim, M.; Zhao, D. Y.; Yang, H. J.; Zhou, W. D.; Ma, Z. Q. Flexible phototransistors based on single-crystalline silicon nanomembranes. Adv. Opt. Mater. 2016, 4, 120-125.
Nano Research
Pages 3010-3032
Cite this article:
Sarkar A, Lee Y, Ahn J-H. Si nanomebranes: Material properties and applications. Nano Research, 2021, 14(9): 3010-3032. https://doi.org/10.1007/s12274-021-3440-x
Topics:
Part of a topical collection:

993

Views

11

Crossref

11

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 05 January 2021
Revised: 03 March 2021
Accepted: 05 March 2021
Published: 15 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return