AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cobalt diselenide (001) surface with short-range Co–Co interaction triggering high-performance electrocatalytic oxygen evolution

Kun Dang1Shihao Zhang1Xuewei Wang1Wenming Sun3( )Ligang Wang4Yang Tian1( )Sihui Zhan2( )
Department of Chemistry Analytical Instrumentation Center Beijing Key Laboratory for Optical Materials and Photonic Devices Capital Normal University, Beijing 100048 China
MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University, Tianjin 300350 China
College of Science China Agricultural University Beijing 100193 China
Beijing National Laboratory for Molecular Sciences (BNLMS) College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
Show Author Information

Graphical Abstract

Abstract

Oxygen evolution reaction (OER) still suffers from the bottleneck in electrocatalytic water splitting. Herein, in virtue of volcano plots drawn by theoretical calculation, the (001) facet was screened as the superb facet of orthorhombic CoSe2 for OER. Afterwards, CoSe2(001) nanosheets were synthesized and the exposure ratio of (001) facet is controllable with thermodynamics methods effectively. The single-facet CoSe2(001) delivered an overpotential as low as 240 mV at 10 mA·cm−2 in 1 M KOH, which outperformed the bulk (380 mV) as well as other CoSe2-base OER catalysts reported before. Especially, a shorter Co–Co path was observed in CoSe2(001) by X­ray absorption spectroscopy. Further density functional theory (DFT) studies revealed that the reversible compression on the shorter Co–Co path could regulate the electronic structure of active sites during the OER process, and thus the energy barrier of the rate-determining step was reduced by 0.15 eV. This work could inspire more insights on the modification of electronic structure for OER electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2021_3444_MOESM1_ESM.pdf (5 MB)

References

1

Liu, Y. W.; Xiao, C.; Huang, P. C.; Cheng, M.; Xie, Y. Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 2018, 4, 1263-1283.

2

Zhao, T. W.; Wang, Y.; Karuturi, S.; Catchpole, K.; Zhang, Q.; Zhao, C. Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2020, 2, 582-613.

3

Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

4

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851-918.

5

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915-923.

6

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

7

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.

8

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar- edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149-1155.

9

Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal- based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.

10

Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 2018, 30, 1802912.

11

Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447-454.

12

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299-3309.

13

Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

14

Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang, H. T. "More is different: " Synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.

15

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.

16

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196-2214.

17

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068-3074.

18

Sabatier, P. Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 1911, 44, 1984-2001.

19

Rajan, A. G.; Martirez, J. M. P.; Carter, E. A. Facet-independent oxygen evolution activity of pure β-NiOOH: Different chemistries leading to similar overpotentials. J. Am. Chem. Soc. 2020, 142, 3600-3612.

20

Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis. Hoboken: Wiley, 2014.

21

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

22

Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192-5247.

23

Wu, H.; Yang, T.; Du, Y. H.; Shen, L.; Ho, G. W. Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 2018, 30, 1804341.

24

Harb, M.; Jeantelot, G.; Basset, J. M. Insights into the most suitable TiO2 surfaces for photocatalytic O2 and H2 evolution reactions from DFT calculations. J. Phys. Chem. C 2019, 123, 28210-28218.

25

Wang, G. Z.; Yang, Z. Z.; Du, Y. G.; Yang, Y. Programmable exposure of Pt active facets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 15848-15854.

26

Lardhi, S.; Cavallo, L.; Harb, M. Significant impact of exposed facets on the BiVO4 material performance for photocatalytic water splitting reactions. J. Phys. Chem. Lett. 2020, 11, 5497-5503.

27

Wu, L.; Wang, Q.; Zhuang, T. T.; Li, Y.; Zhang, G. Z.; Liu, G. Q.; Fan, F. J.; Shi, L.; Yu, S. H. Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion. Nat. Commun. 2020, 11, 5194.

28

Liu, T. F.; Liu, R. Y.; Li, Q. Y.; Yang, J. J. Theoretical insight into the role of defects and facets in the selectivity of products in water oxidation over bismuth vanadate (BiVO4). ACS Sustainable Chem. Eng. 2020, 8, 1980-1988.

29

Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897- 4900.

30

Dai, J. L.; Zhao, D. K.; Sun, W. M.; Zhu, X. J.; Ma, L. J.; Wu, Z. X.; Yang, C. H.; Cui, Z. M.; Li, L. G.; Chen, S. W. Cu(Ⅱ) ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis. ACS Catal. 2019, 9, 10761-10772.

31

Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

32

Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Wang, X.; Hocking, R. K.; Liu, H. W.; Chen, J.; Ge, L.; Zhang, L. Z.; Li, M. R. et al. Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater. 2019, 31, 1805581.

33

Liang, L.; Cheng, H.; Lei, F. C.; Han, J.; Gao, S.; Wang, C. M.; Sun, Y. F.; Qamar, S.; Wei, S. Q.; Xie, Y. Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: Robust water-electrolysis catalysts. Angew. Chem., Int. Ed. 2015, 54, 12004-12008.

34

Zhang, C. Z.; Tang, B.; Gu, X. C.; Feng, L. G. Surface chemical state evaluation of CoSe2 catalysts for the oxygen evolution reaction. Chem. Commun. 2019, 55, 10928-10931.

35

Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670-15675.

36

Dou, Y. H.; He, C. T.; Zhang, L.; Yin, H. J.; Al-Mamun, M.; Ma, J. M.; Zhao, H. J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 2020, 11, 1664.

37

Zhang, X. L.; Hu, S. J.; Zheng, Y. R.; Wu, R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Gu, C.; Yu, X. X.; Zheng, X. S. et al. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 2019, 10, 5338.

38

Wang, X.; Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Yan, X. C.; Zhang, L. Z.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Plasma-triggered synergy of exfoliation, phase transformation, and surface engineering in cobalt diselenide for enhanced water oxidation. Angew. Chem., Int. Ed. 2018, 57, 16421-16425.

39

Zhang, Y. X.; Zhang, C.; Guo, Y. M.; Liu, D. L.; Yu, Y. F.; Zhang, B. Selenium vacancy-rich CoSe2 ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution. J. Mater. Chem. A 2019, 7, 2536-2540.

40

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886- 17892.

41

Sun, X. S.; Luo, X.; Zhang, X. D.; Xie, J. F.; Jin, S.; Wang, H. S.; Zheng, X. S.; Wu, X. J.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797-3801.

42

Yu, X. F.; Chen, G. Y.; Wang, Y. Z.; Liu, J. W.; Pei, K.; Zhao, Y. H.; You, W. B.; Wang, L.; Zhang, J.; Xing, L. S. et al. Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray- drying for enhanced oxygen evolution electrocatalysis. Nano Res. 2020, 13, 437-446.

43

Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electro catalysts: Nano or single atom? Nano Select 2021, 2, 492-511.

44

Rui, K.; Zhao, G. Q.; Chen, Y. P.; Lin, Y.; Zhou, Q.; Chen, J. Y.; Zhu, J. X.; Sun, W. P.; Huang, W.; Dou, S. X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1801554.

45

Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Zinc substitution-induced subtle lattice distortion mediates the active center of cobalt diselenide electrocatalysts for enhanced oxygen evolution. Small 2020, 16, 1907001.

46

Liu, X. B.; Liu, Y. C.; Fan, L. Z. MOF-derived CoSe2 microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 15310-15314.

47

Wei, B. B.; Yao, P. C.; Tang, G. S.; Qi, Z. B.; Hu, W. S.; Hong, J. Q.; Chen, C. X.; Wang, Z. C. Mn-doped CoSe2 nanosheets as high- efficiency catalysts for the oxygen evolution reaction. Dalton Trans. 2019, 48, 14238-14241.

48

Gui, Y. H.; Liu, X.; Dou, Y. H.; Zhang, L.; Al-Mamun, M.; Jiang, L. X.; Yin, H. J.; He, C. T.; Zhao, H. J. Manipulating the assembled structure of atomically thin CoSe2 nanomaterials for enhanced water oxidation catalysis. Nano Energy 2019, 57, 371-378.

49

Xia, Z.; Sun, H.; He, X.; Sun, Z. T.; Lu, C.; Li, J.; Peng, Y.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 2019, 60, 385-393.

50

Li, S. W.; Peng, S. J.; Huang, L. S.; Cui, X. Q.; Al-Enizi, A. M.; Zheng, G. F. Carbon-coated Co3+-rich cobalt selenide derived from ZIF-67 for efficient electrochemical water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 20534-20539.

51

Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672-2676.

52

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238-240.

53

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537-541.

54

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystall. Mater. 2005, 220, 567-570.

55

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.

56

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

Nano Research
Pages 4848-4856
Cite this article:
Dang K, Zhang S, Wang X, et al. Cobalt diselenide (001) surface with short-range Co–Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Research, 2021, 14(12): 4848-4856. https://doi.org/10.1007/s12274-021-3444-6
Topics:

834

Views

20

Crossref

18

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 06 February 2021
Revised: 04 March 2021
Accepted: 08 March 2021
Published: 17 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return