AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-interface collaboration of graphene cross-linked NiS-NiS2- Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte

Haiqing Wang1,§( )Wenjing Zhang2,§Xiaowei Zhang1Shuxian Hu2Zhicheng Zhang3Weijia Zhou1Hong Liu1,4 ( )
Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan Jinan 250022 China
Beijing Computational Science Research CenterBeijing 100193 China
Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University, Tianjin 300072 China
State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

§ Haiqing Wang and Wenjing Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulation of water dissociation, hydrogen recombination, and hydroxyl desorption. Herein, we develop a multi-interface engineering strategy to make an elaborate balance for the alkaline hydrogen evolution reaction (HER) kinetics. The graphene cross-linked three-phase nickel sulfide (NiS-NiS2-Ni3S4) polymorph foam (G-NNNF) was constructed through hydrothermal sulfidation of graphene wrapped nickel foam as a three-dimensional (3D) scaffold template. The G-NNNF exhibits superior catalytic activity toward HER in alkaline electrolyte, which only requires an overpotential of 68 mV to drive 10 mA·cm−2 and is better than most of the recently reported metal sulfides catalysts. Density functional theory (DFT) calculations verify the interfaces between nickel sulfides (NiS/NiS2/Ni3S4) and cross-linked graphene can endow the electrocatalyst with preferable hydrogen adsorption as well as metallic nature. In addition, the electron transfer from Ni3S4/NiS2 to NiS results in the electron accumulation on NiS and the hole accumulation on Ni3S4/NiS2, respectively. The electron accumulation on NiS favors the optimization of the H* adsorption, whereas the hole accumulation on Ni3S4 is beneficial for the adsorption of H2O. The work about multi-interface collaboration pushes forward the frontier of excellent polymorph catalysts design.

Electronic Supplementary Material

Download File(s)
12274_2021_3445_MOESM1_ESM.pdf (2.3 MB)

References

1

Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377

2

Ni, B.; He, P.; Liao, W. X.; Chen, S. M.; Gu, L.; Gong, Y.; Wang, K.; Zhuang, J.; Song, L.; Zhou, G. et al. Surface oxidation of AuNi heterodimers to achieve high activities toward hydrogen/oxygen evolution and oxygen reduction reactions. Small 2018, 14, 1703749

3

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition- metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

4

Liu, D. L.; Zhang, C.; Yu, Y. F.; Shi, Y. M.; Yu, Y.; Niu, Z. Q.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603-613.

5

Hua, W.; Sun, H. H.; Xu, F.; Wang, J. G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335-351.

6

Cheng, T.; Wang, L.; Merinov, B. V.; Goddard III, W. A. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 2018, 140, 7787-7790.

7

Lu, H. Y.; Fan, W.; Huang, Y. P.; Liu, T. X. Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 2018, 11, 1274-1284.

8

Wei, J.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 2018, 10, 75.

9

Wang, Z. Y.; Li, R. L.; Su, C. L.; Loh, K. P. Intercalated phases of transition metal dichalcogenides. SmartMat 2020, 1, e1013.

10

Lv, J.; Cheng, Y.; Liu, W.; Quan, B.; Liang, X. H.; Ji, G. B.; Du, Y. W. Achieving better impedance matching by a sulfurization method through converting Ni into NiS/Ni3S4 composites. J. Mater. Chem. C 2018, 6, 1822-1828.

11

Barim, G.; Smock, S. R.; Antunez, P. D.; Glaser, D.; Brutchey, R. L. Phase control in the colloidal synthesis of well-defined nickel sulfide nanocrystals. Nanoscale 2018, 10, 16298-16306.

12

Dai, C.; Li, B.; Li, J.; Zhao, B.; Wu, R. X.; Ma, H. F.; Duan, X. D. Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Res. 2020, 13, 2506-2511.

13

Zhu, J. H.; Chen, Z.; Jia, L.; Lu, Y. Q.; Wei, X. R.; Wang, X. N.; Wu, W. D.; Han, N.; Li, Y. G.; Wu, Z. X. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res. 2019, 12, 2250-2258.

14

Dong, Q. C.; Zhang, Y. Z.; Dai, Z. Y.; Wang, P.; Zhao, M.; Shao, J. J.; Huang, W.; Dong, X. C. Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. Nano Res. 2018, 11, 1389-1398.

15

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

16

Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077-1084.

17

Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, Vojislav R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197-203.

18

Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

19

Lin, J. H.; Wang, P. C.; Wang, H. H.; Li, C.; Si, X. Q.; Qi, J. L.; Cao, J.; Zhong, Z. X.; Fei, W. D.; Feng, J. C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

20

Wang, H. Q.; Xu, X. B.; Ni, B.; Li, H. Y.; Bian, W.; Wang, X. 3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale 2017, 9, 15895-15900.

21

Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383-393.

22

Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.

23

Jin, H. Y.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S. Z. Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy 2018, 53, 690-697.

24

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.

25

Zhang, B.; Hou, J. G.; Wu, Y. Z.; Cao, S. Y.; Li, Z. W.; Nie, X. W.; Gao, Z. M.; Sun, L. C. Tailoring active sites in mesoporous defect- rich NC/Vo-WON heterostructure array for superior electrocatalytic hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803693.

26

Wang, H. Q.; Zhang, X. W.; Wang, J. G.; Liu, H. L.; Hu, S. L.; Zhou, W. J.; Liu, H.; Wang, X. Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Sci. China Mater. 2020, 63, 1054-1064.

27

Zhang, Z. F.; Wang, H. Q.; Ma, M. J.; Liu, H. L.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Integrating NiMoO wafer as a heterogeneous 'turbo' for engineering robust Ru-based electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 127686.

28

Pothu, R.; Bolagam, R.; Wang, Q. H.; Ni, W.; Cai, J. F.; Peng, X. X.; Feng, Y. Z.; Ma, J. M. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2021, 40, 353-373.

29

Luo, P.; Zhang, H. J.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C. H.; Hu, N.; Wang, Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 2017, 9, 2500-2508.

30

Wang, H. Q.; Xu, Z. F.; Zhang, Z. F.; Hu, S. X.; Ma, M. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Addressable surface engineering for N-doped WS2 nanosheet arrays with abundant active sites and the optimal local electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2020, 12, 22541-22550.

31

Ni, B.; He, T.; Wang, J. O.; Zhang, S. M.; Ouyang, C.; Long, Y.; Zhuang, J.; Wang, X. The formation of (NiFe)S2 pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chem. Sci. 2018, 9. 2762-2767.

32

Wu, T. X.; Zhu, X. G.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution. Nano Res. 2018, 11, 1004-1017.

33

Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, e1007.

34

Li, Q.; Wang, D. W.; Han, C.; Ma, X.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Construction of amorphous interface in an interwoven NiS/ NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A 2018, 6, 8233-8237.

35

Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241-5247.

36

Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417-10430.

37

Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.

38

Miao, R.; Dutta, B.; Sahoo, S.; He, J. K.; Zhong, W.; Cetegen, S. A.; Jiang, T.; Alpay, S. P.; Suib, S. L. Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 13604-13607.

39

Kim, M.; Anjum, M. A. R.; Lee, M.; Lee, B. J.; Lee, J. S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media. Adv. Funct. Mater. 2019, 29, 1809151.

40

Li, M. C.; Qian, Y. T.; Du, J. M.; Wu, H. R.; Zhang, L. Y.; Li, G.; Li, K. D.; Wang, W. M.; Kang, D. J. CuS nanosheets decorated with CoS2 nanoparticles as an efficient electrocatalyst for enhanced hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2019, 7, 14016-14022.

41

Jiang, Y. Q.; Qian, X.; Zhu, C. L.; Liu, H. Y.; Hou, L. X. Nickel cobalt sulfide double-shelled hollow nanospheres as superior bifunctional electrocatalysts for photovoltaics and alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 9379-9389.

42

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water- splitting activity. Angew. Chem. , Int. Ed. 2016, 55, 6702-6707.

43

Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

44

Peng, S. J.; Li, L. L.; Zhang, J.; Tan, T. L.; Zhang, T. R.; Ji, D. X.; Han, X. P.; Cheng, F. Y.; Ramakrishna, S. Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. J. Mater. Chem. A 2017, 5, 23361-23368.

45

Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357-2366.

46

Gu, X. D.; Zheng, S. J.; Huang, X. B.; Yuan, H. F.; Li, J. P.; Kundu, M.; Wang, X. G. Hybrid Ni3S2-MoS2 nanowire arrays as a pH-universal catalyst for accelerating the hydrogen evolution reaction. Chem. Commun. 2020, 56, 2471-2474.

47

Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494-502.

48

Hou, Y.; Qiu, M.; Nam, G.; Kim, M. G.; Zhang, T.; Liu, K. J.; Zhuang, X. D.; Cho, J.; Yuan, C.; Feng, X. L. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three- dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 2017, 17, 4202-4209.

49

Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Zou, X.; Lian, X. R.; Wang, D. J.; Sun, L.; Asefa, T.; Zou, X. X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 2017, 35, 161-170.

50

Zheng, M. Y.; Du, J.; Hou, B. P.; Xu, C. L. Few-layered Mo(1-x)WxS2 hollow nanospheres on Ni3S2 nanorod heterostructure as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 26066-26076.

Nano Research
Pages 4857-4864
Cite this article:
Wang H, Zhang W, Zhang X, et al. Multi-interface collaboration of graphene cross-linked NiS-NiS2- Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Research, 2021, 14(12): 4857-4864. https://doi.org/10.1007/s12274-021-3445-5
Topics:

833

Views

66

Crossref

67

Web of Science

67

Scopus

11

CSCD

Altmetrics

Received: 24 February 2021
Revised: 08 March 2021
Accepted: 08 March 2021
Published: 17 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return