AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Materials and devices for flexible and stretchable photodetectors and light-emitting diodes

Jun-Kyul Song1,2,§Min Sung Kim1,2,§Seungwon Yoo1,3,§Ja Hoon Koo1Dae-Hyeong Kim1,2,3,4( )
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

§ Jun-Kyul Song, Min Sung Kim, and Seungwon Yoo contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Recently, significant efforts have been directed at overcoming the limitations of conventional rigid optoelectronic devices, particularly their poor mechanical stability under bending, folding, and stretching deformations. One of major approaches for rendering optoelectronic devices mechanically deformable is to replace the conventional electronic/optoelectronic materials with functional nanomaterials or organic materials that are intrinsically flexible/stretchable. Further, advanced device designs and unconventional fabrication methods have also contributed to the development of soft optoelectronic devices. Accordingly, new devices such as bio-inspired curved image sensors, wearable light emitting devices, and deformable bio-integrated optoelectronic devices have been developed. In this review, recent progress in the development of soft optoelectronic materials and devices is outlined. First, various materials such as nanomaterials, organic materials, and their hybrids that are suitable for developing deformable photodetectors, are presented. Then, the nanomaterials and organic/polymeric materials that are applicable in deformable light-emitting diodes are described. Finally, representative system-level applications of flexible and stretchable photodetectors and light-emitting diodes are reviewed, and future prospects are discussed.

References

[1]
Kim, H. S.; Brueckner, E.; Song, J. Z.; Li, Y. H.; Kim, S.; Lu, C. F.; Sulkin, J.; Choquette, K.; Huang, Y. G.; Nuzzo, R. G. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci. USA 2011, 108, 10072-10077.
[2]
Kim, T. I.; Jung, Y. H.; Song, J. Z.; Kim, D.; Li, Y. H.; Kim, H. S.; Song, I. S.; Wierer, J. J.; Pao, H. A.; Huang, Y. G. et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 2012, 8, 1643-1649.
[3]
Kim, R. H.; Kim, D. H.; Xiao, J. L.; Kim, B. H.; Park, S. I.; Panilaitis, B.; Ghaffari, R.; Yao, J. M.; Li, M. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 2010, 9, 929-937.
[4]
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208-212.
[5]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[6]
Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507-511.
[7]
Joo, H.; Jung, D.; Sunwoo, S. H.; Koo, J. H.; Kim, D. H. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 2020, 16, 1906270.
[8]
Lee, H.; Kim, I.; Kim, M.; Lee, H. Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes. Nanoscale 2016, 8, 1789-1822.
[9]
Park, M.; Do, K.; Kim, J.; Son, D.; Koo, J. H.; Park, J.; Song, J. K.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics. Adv. Healthc. Mater. 2015, 4, 992-997.
[10]
Lee, M.; Lee, W.; Choi, S.; Jo, J. W.; Kim, J.; Park, S. K.; Kim, Y. H. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 2017, 29, 1700951.
[11]
Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95-99.
[12]
Jung, I.; Xiao, J. L.; Malyarchuk, V.; Lu, C. F.; Li, M.; Liu, Z. J.; Yoon, J.; Huang, Y. G.; Rogers, J. A. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl. Acad. Sci. USA 2011, 108, 1788-1793.
[13]
Shin, G.; Jung, I.; Malyarchuk, V.; Song, J. Z.; Wang, S. D.; Ko, H. C.; Huang, Y. G.; Ha, J. S.; Rogers, J. A. Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. Small 2010, 6, 851-856.
[14]
Kim, M. S.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S. Y.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 2020, 3, 546-553.
[15]
Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.
[16]
Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.
[17]
Koo, J. H.; Kim, D. C.; Shim, H. J.; Kim, T. H.; Kim, D. H. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834.
[18]
Shin, G.; Gomez, A. M.; Al-Hasani, R.; Jeong, Y. R.; Kim, J.; Xie, Z. Q.; Banks, A.; Lee, S. M.; Han, S. Y.; Yoo, C. J. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 93, 509-521.e3.
[19]
Park, S. I.; Shin, G.; McCall, J. G.; Al-Hasani, R.; Norris, A.; Xia, L.; Brenner, D. S.; Noh, K. N.; Bang, S. Y.; Bhatti, D. L. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl. Acad. Sci. USA 2016, 113, E8169-E8177.
[20]
Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211-216.
[21]
Park, S. I.; Brenner, D. S.; Shin, G.; Morgan, C. D.; Copits, B. A.; Chung, H. U.; Pullen, M. Y.; Noh, K. N.; Davidson, S.; Oh, S. J. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 2015, 33, 1280-1286.
[22]
Kim, J.; Salvatore, G. A.; Araki, H.; Chiarelli, A. M.; Xie, Z. Q.; Banks, A.; Sheng, X.; Liu, Y. H.; Lee, J. W.; Jang, K. I. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2016, 2, e1600418.
[23]
Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149-165.
[24]
Joe, D. J.; Kim, S.; Park, J. H.; Park, D. Y.; Lee, H. E.; Im, T. H.; Choi, I.; Ruoff, R. S.; Lee, K. J. Laser-material interactions for flexible applications. Adv. Mater. 2017, 29, 1606586.
[25]
Karl, M.; Glackin, J. M. E.; Schubert, M.; Kronenberg, N. M.; Turnbull, G. A.; Samuel, I. D. W.; Gather, M. C. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 2018, 9, 1525.
[26]
Zhang, H.; Rogers, J. A. Recent advances in flexible inorganic light emitting diodes: From materials design to integrated optoelectronic platforms. Adv. Opt. Mater. 2019, 7, 1800936.
[27]
Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M. S.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L.; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.
[28]
Lee, Y.; Kim, J.; Koo, J. H.; Kim, T. H.; Kim, D. H. Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 2018, 35, 1-11.
[29]
Song, J. K.; Do, K.; Koo, J. H.; Son, D.; Kim, D. H. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull. 2019, 44, 643-656.
[30]
Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203-4218.
[31]
Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 2014, 5, 5745.
[32]
Liu, J.; Wang, J. C.; Zhang, Z. T.; Molina-Lopez, F.; Wang, G. J. N.; Schroeder, B. C.; Yan, X. Z.; Zeng, Y. T.; Zhao, O.; Tran, H. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362.
[33]
Lee, Y.; Oh, J. Y.; Xu, W. T.; Kim, O.; Kim, T. R.; Kang, J. H.; Kim, Y.; Son, D.; Tok, J. B. H.; Park, M. J. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 2018, 4, eaat7387.
[34]
Chow, P. C. Y.; Someya, T. Organic photodetectors for next-generation wearable electronics. Adv. Mater. 2020, 32, 1902045.
[35]
Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748-753.
[36]
Zhang, K.; Jung, Y. H.; Mikael, S.; Seo, J. H.; Kim, M.; Mi, H. Y.; Zhou, H.; Xia, Z. Y.; Zhou, W. D.; Gong, S. Q. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 2017, 8, 1782.
[37]
Sheng, X.; Yu, C. J.; Malyarchuk, V.; Lee, Y. H.; Kim, S.; Kim, T.; Shen, L.; Horng, C.; Lutz, J.; Giebink, N. C. et al. Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores. Adv. Opt. Mater. 2014, 2, 314-319.
[38]
Kim, Y. J.; Yoo, Y. J.; Kang, M. H.; Ko, J. H.; Park, M. R.; Yoo, D. E.; Lee, D. W.; Kim, K.; Kang, I. S.; Song, Y. M. Mechanotunable optical filters based on stretchable silicon nanowire arrays. Nanophotonics 2020, 9, 3287-3293.
[39]
Choi, C.; Leem, J.; Kim, M. S.; Taqieddin, A.; Cho, C.; Cho, K. W.; Lee, G. J.; Seung, H.; Bae, H. J.; Song, Y. M. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934.
[40]
Choi, M.; Bae, S. R.; Hu, L. H.; Hoang, A. T.; Kim, S. Y.; Ahn, J. H. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 2020, 6, eabb5898.
[41]
Kim, T. Y.; Ha, J.; Cho, K.; Park, J.; Seo, J.; Park, J.; Kim, J. K.; Chung, S.; Hong, Y.; Lee, T. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms. ACS Nano 2017, 11, 10273-10280.
[42]
Lee, W.; Lee, J.; Yun, H.; Kim, J.; Park, J.; Choi, C.; Kim, D. C.; Seo, H.; Lee, H.; Yu, J. W. et al. High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 2017, 29, 1702902.
[43]
Peng, Z. Y.; Xu, J. L.; Zhang, J. Y.; Gao, X.; Wang, S. D. Solution-processed high-performance hybrid photodetectors enhanced by perovskite/MoS2 bulk heterojunction. Adv. Mater. Interfaces 2018, 5, 1800505.
[44]
Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278-282.
[45]
Yang, J.; Choi, M. K.; Yang, U. J.; Kim, S. Y.; Kim, Y. S.; Kim, J. H.; Kim, D. H.; Hyeon, T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2021, 21, 26-33.
[46]
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L. Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180-183.
[47]
Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.
[48]
Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969-973.
[49]
Kim, Y. H.; Koh, S.; Lee, H.; Kang, S. M.; Lee, D. C.; Bae, B. S. Photo-patternable quantum dots/siloxane composite with long-term stability for quantum dot color filters. ACS Appl. Mater. Interfaces, 2020, 12, 3961-3968.
[50]
Park, S.; Kim, S. J.; Nam, J. H.; Pitner, G.; Lee, T. H.; Ayzner, A. L.; Wang, H.; Fong, S. W.; Vosgueritchian, M.; Park, Y. J. et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv. Mater. 2015, 27, 759-765.
[51]
Koo, J. H.; Jeong, S.; Shim, H. J.; Son, D.; Kim, J.; Kim, D. C.; Choi, S.; Hong, J. I., Kim, D. H. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 2017, 11, 10032-10041.
[52]
Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H. Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 2012, 6, 105-110.
[53]
Choi, M. K.; Park, I.; Kim, D. C.; Joh, E.; Park, O. K.; Kim, J.; Kim, M.; Choi, C.; Yang, J.; Cho, K. W. et al. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 2015, 25, 7109-7118.
[54]
Zhao, Y. B.; Wang, V.; Lien, D. H.; Javey, A. A generic electroluminescent device for emission from infrared to ultraviolet wavelengths. Nat. Electron. 2020, 3, 612-621.
[55]
Park, S.; Fukuda, K.; Wang, M.; Lee, C.; Yokota, T.; Jin, H.; Jinno, H.; Kimura, H. Zalar, P.; Matsuhisa, N. et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 2018, 30, 1802359.
[56]
Liu, M. L.; Wang, H. T.; Tang, Q. X.; Zhao, X. L.; Tong, Y. H.; Liu, Y. C. Ultrathin air-stable n-type organic phototransistor array for conformal optoelectronics. Sci. Rep. 2018, 8, 16612.
[57]
Ko, K. J.; Lee, H. B.; Kim, H. M.; Lee, G. J.; Shin, S. R.; Kumar, N.; Song, Y. M.; Kang, J. W. High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale 2018, 10, 16184-16192.
[58]
White, M. S.; Kaltenbrunner, M.; Głowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 2013, 7, 811-816.
[59]
Kee, S.; Kim, N.; Park, B.; Kim, B. S.; Hong, S.; Lee, J. H.; Jeong, S.; Kim, A.; Jang, S. Y.; Lee, K. Highly deformable and see-through polymer light-emitting diodes with all-conducting-polymer electrodes. Adv. Mater. 2018, 30, 1703437.
[60]
Liu, K.; Tran, H.; Feig, V. R.; Bao, Z. N. Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bull. 2020, 45, 96-102.
[61]
Kim, D. H.; Lu, N. S.; Huang, Y. G.; Rogers, J. A. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 2012, 37, 226-235.
[62]
Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.
[63]
Choi, C.; Lee, Y.; Cho, K. W.; Koo, J. H.; Kim, D. H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 2019, 52, 73-81.
[64]
Song, E. M.; Li, J. H.; Won, S. M.; Bai, W. B.; Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590-603.
[65]
Kim, R. H.; Tao, H.; Kim, T. I.; Zhang, Y. H.; Kim, S.; Panilaitis, B.; Yang, M. M.; Kim, D. H.; Jung, Y. H.; Kim, B. H.; Li, Y. H. et al. Materials and designs for wirelessly powered implantable light-emitting systems. Small 2012, 8, 2812-2818.
[66]
Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266.
[67]
Hong, S.; Lee, S.; Kim, D. H. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc. IEEE 2019, 107, 2185-2197.
[68]
Lee, H. C.; Hsieh, E. Y.; Yong, K.; Nam, S. Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 2020, 13, 1406-1412.
[69]
Koo, J. H.; Song, J. K.; Yoo, S.; Sunwoo, S. H.; Son, D.; Kim, D. H. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv. Mater. Technol. 2020, 5, 2000407.
[70]
Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 2019, 6, 1566-1595.
[71]
Song, E. M.; Chiang, C. H.; Li, R.; Jin, X.; Zhao, J. N.; Hill, M.; Xia, Y.; Li, L. Z.; Huang, Y. M.; Won, S. M. et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA 2019, 116, 15398-15406.
[72]
Xu, S.; Yan, Z.; Jang, K. I.; Huang, W.; Fu, H. R.; Kim, J.; Wei, Z. J.; Flavin, M.; McCracken, J.; Wang, R. H. et al. Assembly of micro/ nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015, 347, 154-159.
[73]
McCall, J. G.; Kim, T. I.; Shin, G.; Huang, X.; Jung, Y. H.; Al-Hasani, R.; Omenetto, F. G.; Bruchas, M. R.; Rogers, J. A. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 2013, 8, 2413-2428.
[74]
Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee. J. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616-619.
[75]
Lu, D.; Liu, T. L.; Chang, J. K.; Peng, D. S.; Zhang, Y.; Shin, J.; Hang, T.; Bai, W. B.; Yang, Q. S.; Rogers, J. A. Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 2019, 31, 1902739.
[76]
Lee, B.; Oh, J. Y.; Cho, H.; Joo, C. W.; Yoon, H.; Jeong, S.; Oh, E.; Byun, J.; Kim, H.; Lee, S. et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 2020, 11, 663.
[77]
Zhou, Y. L.; Zhao, C. S.; Wang, J. C.; Li, Y. Z.; Li, C. X.; Zhu, H. Y.; Feng, S. X.; Cao, S. T.; Kong, D. S. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 2019, 1, 511-518.
[78]
Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.
[79]
Kim, J.; Gutruf, P.; Chiarelli, A. M.; Heo, S. Y.; Cho, K.; Xie, Z. Q.; Banks, A.; Han, S.; Jang, K. I.; Lee, J. W. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 2017, 27, 1604373.
[80]
Shin, J.; Liu, Z. H.; Bai, W. B.; Liu, Y. H.; Yan, Y.; Xue, Y. G.; Kandela, I.; Pezhouh, M.; MacEwan, M. R.; Huang, Y. G. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899.
[81]
Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.
[82]
Zhang, H.; Gutruf, P.; Meacham, K.; Montana, M. C.; Zhao, X. Y.; Chiarelli, A. M.; Vazquez-Guardado, A.; Norris, A.; Lu, L. Y.; Guo, Q. L. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 2019, 5, eaaw0873.
[83]
Zhang, Y.; Castro, D. C.; Han, Y.; Wu, Y. X.; Guo, H. X.; Weng, Z. Y.; Xue, Y. G.; Ausra, J.; Wang, X. J.; Li, R. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 21427-21437.
[84]
Gutruf, P.; Krishnamurthi, V.; Vázquez-Guardado, A.; Xie, Z. Q.; Banks, A.; Su, C. J.; Xu, Y. H.; Haney, C. R.; Waters, E. A.; Kandela, I. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 2018, 1, 652-660.
[85]
Zhang, Y.; Mickle, A. D.; Gutruf, P.; McIlvried, L. A.; Guo, H. X.; Wu, Y. X.; Golden, J. P.; Xue, Y. G.; Grajales-Reyes, J. G.; Wang, X. J. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 2019, 5, eaaw5296.
[86]
Lee, W. Y.; Ha, S.; Lee, H.; Bae, J. H.; Jang, B.; Kwon, H. J.; Yun, Y.; Lee, S.; Jang, J. High-detectivity flexible near-infrared photodetector based on chalcogenide Ag2Se nanoparticles. Adv. Opt. Mater. 2019, 7, 1900812.
[87]
Seo, J. H.; Zhang, K.; Kim, M.; Zhao, D. Y.; Yang, H. J.; Zhou, W. D.; Ma, Z. Q. Flexible phototransistors based on single-crystalline silicon nanomembranes. Adv. Opt. Mater. 2016, 4, 120-125.
[88]
Yoon, J.; Bae, G. Y.; Yoo, S.; Yoo, J. I.; You, N. H.; Hong, W. K.; Ko, H. C. Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. J. Alloys Compd. 2020, 817, 152788.
[89]
Liu, J. Y.; Shabbir, B.; Wang, C. J.; Wan, T.; Ou, Q. D.; Yu, P.; Tadich, A.; Jiao, X. C.; Chu, D. W.; Qi. D. C. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644.
[90]
Yakunin, S.; Dirin, D. N.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T.; Kovalenko, M. V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 2016, 10, 585-589.
[91]
Tong, S. C.; Yuan, J.; Zhang, C. J.; Wang, C. H.; Liu, B. X.; Shen, J. Q.; Xia, H. Y.; Zou, Y. P.; Xie, H. P.; Sun, J. et al. Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. npj Flex. Electron. 2018, 2, 7.
[92]
Krishna, A.; Kim, J. M.; Leem, J.; Wang, M. C.; Nam. S.; Lee, J. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 2019, 19, 5086-5092.
[93]
Kim, M.; Kang, P.; Leem, J.; Nam, S. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 2017, 9, 4058-4065.
[94]
Suzuki, D.; Oda, S.; Kawano, Y. A flexible and wearable terahertz scanner. Nat. Photon. 2016, 10, 809-813.
[95]
Kim, R. H.; Kim, S.; Song, Y. M.; Jeong, H.; Kim, T. I.; Lee, J.; Li, X. L.; Choquette, K. D.; Rogers, J. A. Flexible vertical light emitting diodes. Small 2012, 8, 3123-3128.
[96]
Kim, B. H.; Nam, S.; Oh, N.; Cho, S. Y.; Yu, K. J.; Lee, C. H.; Zhang, J. Q.; Deshpande, K.; Trefonas, P.; Kim, J. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 2016, 10, 4920-4925.
[97]
Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881-3886.
[98]
Park, S. I.; Le, A. P.; Wu, J.; Huang, Y. G.; Li, X. L.; Rogers, J. A. Light emission characteristics and mechanics of foldable inorganic light-emitting diodes. Adv. Mater. 2010, 22, 3062-3066.
[99]
Choi, M. K.; Yang, J.; Kim, D. C.; Dai, Z. H.; Kim, J.; Seung, H.; Kale, V. S.; Sung, S. J.; Park, C. R.; Lu, N. S. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 2018, 30, 1703279.
[100]
Kim, J.; Campbell, A. S.; Esteban-Fernández de Ávila, B.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389-406.
[101]
Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.
[102]
Hong, Y. J.; Lee, H.; Kim, J.; Lee, M.; Choi, H. J.; Hyeon, T.; Kim, D. H. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv. Funct. Mater. 2018, 28, 1805754.
[103]
Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D. H. Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 2014, 26, 6329-6334.
[104]
Yokota, T.; Nakamura, T.; Kato, H.; Mochizuki, M.; Tada, M.; Uchida, M.; Lee, S.; Koizumi, M.; Yukita, W.; Takimoto, A. et al. A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 2020, 3, 113-121.
[105]
Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899-904.
[106]
Song, J. K.; Son, D.; Kim, J.; Yoo, Y. J.; Lee, G. J.; Wang, L.; Choi, M. K.; Yang, J.; Lee, M.; Do, K. et al. Wearable force touch sensor array using a flexible and transparent electrode. Adv. Funct. Mater. 2017, 27, 1605286.
[107]
Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375-383.
[108]
Kim, E. H.; Cho, S. H.; Lee, J. H.; Jeong, B.; Kim, R. H.; Yu, S.; Lee, T. W.; Shim, W.; Park, C. Organic light emitting board for dynamic interactive display. Nat. Commun. 2017, 8, 14964.
[109]
Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048-1056.
[110]
Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.
[111]
Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397-404.
[112]
Choi, M. K.; Park, O. K.; Choi, C.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, D. J.; Kim, M.; Hyun, W.; Kim, S. J. et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 2016, 5, 80-87.
[113]
Lee, H.; Lee, Y.; Song, C.; Cho, H. R.; Ghaffari, R.; Choi, T. K.; Kim, K. H.; Lee, Y. B.; Ling, D. S.; Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun. 2015, 6, 10059.
[114]
Yang, J.; Choi, M. K.; Kim, D. H.; Hyeon, T. Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 2016, 28, 1176-1207.
[115]
Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.
[116]
Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977-981.
[117]
Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Prospects for LED lighting. Nat. Photon. 2009, 3, 180-182.
[118]
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 2013, 7, 13-23.
[119]
Coe-Sullivan, S. Quantum dot developments. Nat. Photon. 2009, 3, 315-316.
[120]
Lee, S.; Yoon, D. E.; Kim, D.; Shin, D. J.; Jeong, B. G.; Lee, D.; Lim, J.; Bae, W. K.; Lim, H. K.; Lee, D. C. Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands. Nanoscale 2019, 11, 15072-15082.
[121]
Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494-499.
[122]
Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J. L.; Lögdlund, M. et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121-128.
[123]
Liang, J. J.; Li, L.; Niu, X. F.; Yu, Z. B.; Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 2013, 7, 817-824.
[124]
Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989-3994.
[125]
Teo, M. Y.; Kim, N.; Kee, S.; Kim, B. S.; Kim, G.; Hong, S.; Jung, S.; Lee, K. Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 2017, 9, 819-826.
[126]
Lee, G. J.; Choi, C.; Kim, D. H.; Song, Y. M. Bioinspired artificial eyes: Optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 2018, 28, 1705202.
[127]
Lee, G. J.; Yoo, Y. J.; Song, Y. M. Recent advances in imaging systems and photonic nanostructures inspired by insect eye geometry. Appl. Spectrosc. Rev. 2018, 53, 112-128.
[128]
Fan, Z. C.; Yang, Y. Y.; Zhang, F.; Xu, Z.; Zhao, H. B.; Wang, T. Y.; Song, H. J.; Huang, Y. G.; Rogers, J. A.; Zhang, Y. H. Inverse design strategies for 3D surfaces formed by mechanically guided assembly. Adv. Mater. 2020, 32, 1908424.
[129]
Zhao, H. B.; Li, K.; Han, M. D.; Zhu, F.; Vázquez-Guardado, A.; Guo, P. J.; Xie, Z. Q.; Park, Y.; Chen, L.; Wang, X. J. et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proc. Natl. Acad. Sci. USA 2019, 116, 13239-13248.
[130]
Lee, W.; Liu, Y.; Lee, Y.; Sharma, B. K.; Shinde, S. M.; Kim, S. D.; Nan, K. W.; Yan, Z.; Han, M. D.; Huang, Y. G. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417.
[131]
Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.
[132]
Bai, K.; Cheng, X.; Xue, Z. G.; Song, H. L.; Sang, L.; Zhang, F.; Liu, F.; Luo, X.; Huang, W.; Huang, Y. G. et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Sci. Adv. 2020, 6, eabb7417.
[133]
Yan, D. J.; Chang, J. H.; Zhang, H.; Liu, J. X.; Song, H. L.; Xue, Z. G.; Zhang, F.; Zhang, Y. H. Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 2020, 11, 1180.
[134]
Cheng, X.; Zhang, Y. H. Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv. Mater. 2019, 31, 1901895.
[135]
Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458-463.
[136]
Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314.
[137]
Jiang, Y.; Liu, Z. Y.; Matsuhisa, N.; Qi, D. P.; Leow, W. R.; Yang, H.; Yu, J. C.; Chen, G.; Liu, Y. Q.; Wan, C. J. et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 2018, 30, 1706589.
Nano Research
Pages 2919-2937
Cite this article:
Song J-K, Kim MS, Yoo S, et al. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Research, 2021, 14(9): 2919-2937. https://doi.org/10.1007/s12274-021-3447-3
Topics:
Part of a topical collection:

1612

Views

47

Crossref

46

Web of Science

46

Scopus

5

CSCD

Altmetrics

Received: 07 January 2021
Revised: 04 March 2021
Accepted: 09 March 2021
Published: 16 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return