AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance flexible self-powered strain sensor based on carbon nanotube/ZnSe/CoSe2 nanocomposite film electrodes

Qiufan Wang1Jiaheng Liu1Xuan Ran1Daohong Zhang1( )Guozhen Shen2( )Menghe Miao3
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R & D Center of Hyperbranched Polymers Synthesis and Applications, School of Chemistry and Materials Science South Central University for NationalitiesWuhan 430074 China
State Key Laboratory for Superlattices and Microstructures, Institution of Semiconductors Chinese Academy of SciencesBeijing 100083 China
CSIRO Manufacturing 75 Pigdons RoadWaurn PondsVictoria 3216 Australia
Show Author Information

Graphical Abstract

Abstract

High-performance energy storage and sensing devices have been undergoing rapid development to meet the demand for portable and wearable electronic products, which require flexibility, extensibility, small volume and lightweight. In this study, we construct a lightweight and flexible self-powered sensing system by integrating a highly stretchable strain sensor with a high-performance asymmetric supercapacitor based on ZnSe/CoSe2//ECNT (ECNT: electrochemically activated carbon nanotube film). The ZnSe/CoSe2 two-dimentional nanosheets on carbon nanotube (CNT) films are synthesized through a simple and efficient strategy derived from ZnCo-based metal-organic frameworks (MOFs). The density functional theory (DFT) simulations show the higher conductivity of the ZnSe/CoSe2/CNT electrode than the CoSe2/CNT electrode. Due to the synergistic properties of self-supported two-dimentional ZnSe/CoSe2 nanosheets with high specific surface area and the high pathway of one-dimention CNTs, the nanocomposite electrode provides efficient transmission and short paths for electron/ion diffusion. The asymmetric supercapacitor provides a stable output power supply to the sensors that can precisely respond to strain and pressure changes. The sensor can also be attached to a garment for measuring a variety of joint movements.

Electronic Supplementary Material

Download File(s)
12274_2021_3453_MOESM1_ESM.pdf (3.4 MB)

References

1

Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, E.; Gogosti, Y.; Xu, B. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603.

2

Liu, C. R.; Han, S. J.; Xu, H. H.; Wu, J.; Liu, C. Multifunctional highly sensitive multiscale stretchable strain sensor based on a graphene/ glycerol–KCl synergistic conductive network. ACS Appl. Mater. Interfaces 2018, 10, 31716–31724.

3

Zhu, G. J.; Ren, P. G.; Guo, H.; Jin, Y. L.; Yan, D. X.; Li, Z. M. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl. Mater. Interfaces 2019, 11, 23649–23658.

4

Yang, T.; Liu, J. W.; Zhang, M. S.; Yang, D. X.; Zheng, J. H.; Ju, Z. J.; Cheng, J. L.; Zhuang, J. Y.; Liu, Y. G.; Zhong, J. S. et al. Encapsulating MnSe nanoparticles inside 3D hierarchical carbon frameworks with lithium storage boosted by in situ electrochemical phase transformation. ACS Appl. Mater. Interfaces 2019, 11, 33022– 33032.

5

Zhu, Y. R.; Li, J. Y.; Yun, X. R.; Zhou, W.; Xi, L. J.; Li, N.; Hu, Z. L. Hydrothermal synthesis of nanoflake-assembled (Ni0.5Co0.5)0.85Se microspheres as the cathode and reduced graphene oxide/porous Fe2O3 nanospheres composite as the anode for novel alkaline aqueous batteries. ACS Sustainable Chem. Eng. 2020, 8, 561–572.

6

Zhang, Z.; Huang, Y.; Liu, X. D.; Wang, X.; Liu, P. B. Core–shell Co, Zn bimetallic selenide embedded nitrogen-doped carbon polyhedral frameworks assist in sodium-ion battery ultralong cycle. ACS Sustainable Chem. Eng. 2020, 8, 8381–8390.

7

Yang, Y. Li, M. L.; Lin, J. N.; Zou, M. Y.; Gu, S. T.; Hong, X. J.; Si, L. P.; Cai, Y. P. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor. Inorg. Chem. 2020, 59, 2406–2412.

8

Yao, S. Y.; Jiao, Y.; Sun, S. F.; Wang, L. X.; Li, P. Y.; Chen, G. Vertically Co-oriented Mn-metal-organic framework grown on 2D cation-intercalated manganese oxide via a self-sacrificing template process for a high-performance asymmetric supercapacitor. ACS Sustainable Chem. Eng. 2020, 8, 3191–3199.

9

Sun, Z.; Zhao, L. J.; Wan, H. X.; Liu, H.; Wu, D. Z.; Wang, X. D. Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors. Chem. Eng. J. 2020, 396, 125317.

10

Zeng, J.; Dong, L. B.; Sha, W. X.; Wei, L.; Guo, X. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J. 2020, 383, 123098.

11

Song, P.; Tao, J.; He, X. M.; Sun, Y. M.; Shen, X. P.; Zhai, L. Z.; Yuan, A. H.; Zhang, D. Y.; Jia, Z. Y.; Li, B. L. Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics. Chem. Eng. J. 2020, 386, 124024.

12

Xia, L. Y.; Li, X. L.; Wu, Y. Q.; Hu, S. H.; Liao, Y.; Huang, L.; Qing, Y.; Lu, X. H. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chem. Eng. J. 2020, 379, 122325.

13

Yu, X.; Zhang, W. W.; Liu, L.; Fautrelle, Y.; Lu, X. G.; Li, X. High magnetic field-engineered bunched Zn-Co-S yolk–shell balls intercalated within S, N codoped CNT/graphene films for free- standing supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 33690–33701.

14

Han, J. Q.; Wang, S. W.; Zhu, S. L.; Huang, C. B.; Yue, Y. Y.; Mei, C. T.; Xu, X. W.; Xia, C. L. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness. ACS Appl. Mater. Interfaces 2019, 11, 44624–44635.

15

Liang, X.; Zhao, L.; Wang, Q. F.; Ma, Y.; Zhang, D. H. A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/ PANI composite film. Nanoscale 2018, 10, 22329–22334.

16

Wang, Q. F.; Liang, X.; Ma, Y.; Zhang, D. H. Fabrication of hollow nanorod electrodes based on RuO2//Fe2O3 for an asymmetric supercapacitor. Dalton Trans. 2018, 47, 7747–7753.

17

Wang, Q. F.; Ma, Y.; Liang, X.; Zhang, D. H.; Miao, M. H. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 2019, 371, 145–153.

18

Chen, L.; Yu, Z. G.; Liang, D.; Li, S. F.; Tan, W. C.; Zhang, Y. W.; Ang, K. W. Ultrasensitive and robust two-dimensional indium selenide flexible electronics and sensors for human motion detection. Nano Energy 2020, 76, 105020.

19

Chen, J.; Zhang, J. J.; Luo, Z. B.; Zhang, J. Y.; Li, L.; Su, Y.; Gao, X.; Li, Y. T.; Tang, W.; Cao, C. J. et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 2020, 12, 22200–22211.

20

Zhou, Y. L.; Wu, Y. Z.; Asghar, W.; Ding, J.; Su, X. R.; Li, S. B.; Li, F. L.; Yu, Z.; Shang, J.; Liu, Y. W. et al. Asymmetric structure based flexible strain sensor for simultaneous detection of various human joint motions. ACS Appl. Electron. Mater. 2019, 1, 1866–1872.

21

Pu, J. H.; Zhao, X.; Zha, X. J.; Li, W. D.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 2020, 74, 104814.

22

Gong, X.; Zhang, L.; Huang, Y. N.; Wang, S. G.; Pan, G. B.; Li, L. Q. Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices. RSC Adv. 2020, 10, 22222–22229.

23

Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, eaaw7846.

24

Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J. Y. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542.

25

Zhang, C. J.; Li, H.; Huang, A. M.; Zhang, Q.; Rui, K.; Lin, H. J.; Sun, G. Z.; Zhu, J. X.; Peng, H. S.; Huang, W. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 2019, 15, e1805493.

26

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

27

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

28

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29
Miao, M. H. Carbon nanotube yarn structures and properties. In: Carbon Nanotube Fibers and Yarns. Miao, M. H. Ed.; Amsterdam: Elsevier, 2020; pp 137–182.https://doi.org/10.1016/B978-0-08-102722-6.00007-9
30

Xiao, Y. H.; Su, D. C.; Wang, X. Z.; Wu, S. D.; Zhou, L. M.; Shi, Y.; Fang, S. M.; Cheng, H. M.; Li, F. Batteries: CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1870099.

31

Zhang, K. Q.; Lee, T. H.; Jang, H. W.; Shokouhimehr. M.; Choi, J. W. A hybrid energy storage mechanism of zinc hexacyanocobaltate-based metal-organic framework endowing stationary and high-performance lithium-ion storage. Electron. Mater. Lett. 2019, 15, 444–453.

32

Wang, L. C.; Gao, L.; Wang, J.; Shen, Y. MoO3 nanobelts for high- performance asymmetric supercapacitor. J. Mater. Sci. 2019, 54, 13685–13693.

33

Li, B.; Hu, N. T.; Su, Y. J.; Yang, Z.; Shao, F.; Li, G.; Zhang, C. R.; Zhang, Y. F. Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 46044–46053.

34

Wang, Y.; Zhang, Y. Z.; Dubbink, D.; ten Elshof, J. E. Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 2018, 49, 481–488.

35

Tian, Y. P.; Yang, C. H.; Luo, Y. Y.; Zhao, H. Y.; Du, Y. P.; Kong, L. B.; Que, W. X. Understanding MXene-based "symmetric" supercapacitors and redox electrolyte energy storage. ACS Appl. Energy Mater. 2020, 3, 5006–5014.

36

Chodankar, N. R.; Bagal, I. V.; Ryu, S. W.; Kim, D. H. Hybrid material passivation approach to stabilize the silicon nanowires in aqueous electrolyte for high-energy efficient supercapacitor. Chem. Eng. J. 2019, 362, 609–618.

37

Ye, A. N.; Zhu, Q.; Zhang, X. H.; Yang, Z. H. Spatial distribution control on the energy storage performance of PANI@PVA@ACNT- based flexible solid-state supercapacitors. ACS Appl. Energy Mater. 2020, 3, 3082–3091

38

Yang, Z. K.; Shi, D. J.; Dong, W. F.; Chen, M. Q. Self-standing hydrogels composed of conducting polymers for all-hydrogel-state supercapacitors. Chem. Eur. J. 2020, 26, 1846–1855.

Nano Research
Pages 170-178
Cite this article:
Wang Q, Liu J, Ran X, et al. High-performance flexible self-powered strain sensor based on carbon nanotube/ZnSe/CoSe2 nanocomposite film electrodes. Nano Research, 2022, 15(1): 170-178. https://doi.org/10.1007/s12274-021-3453-5
Topics:

824

Views

37

Crossref

37

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 25 January 2021
Revised: 25 February 2021
Accepted: 15 March 2021
Published: 17 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return