Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Inorganic luminescent nanocrystals (NCs) doped with main-group ns2-metal ions have evoked tremendous interest in many technological fields owing to their superior optical properties. Herein, we report a new class of luminescent nanoprobes based on 5s2-metal Sb3+-doped CaS NCs that are excitable by using a near ultraviolet light-emitting diode. The optical properties and excited-state dynamics of Sb3+ in CaS NCs are comprehensively surveyed through temperature-dependent steady-state and transient photoluminescence (PL) spectroscopies. Owing to the strong electron–phonon coupling of Sb3+ in CaS NCs, Sb3+ ions experience a dynamic Jahn-Taller distortion on the excited state, which results in bright green PL of Sb3+ with a broad emission band, a large Stokes shift, and a high PL quantum yield up to 17.3%. By taking advantage of the intense PL of Sb3+, we show in proof-of-concept experiments the application of biotinylated CaS: Sb3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging and zebrafish imaging with a high imaging contrast. These findings provide fundamental insights into the excited-state dynamics of Sb3+ in CaS NCs, thus laying a foundation for future design of novel and versatile luminescent nanoprobes via main-group ns2-metal doping.
Wei, Y.; Xing, G. C.; Liu, K.; Li, G. G.; Dang, P. P.; Liang, S. S.; Liu, M.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light: Sci. Appl. 2019, 8, 15.
Jing, Y. Y.; Liu, Y.; Jiang, X. X.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 2020, 32, 5327–5334.
Han, P. G.; Luo, C.; Yang, S. Q.; Yang, Y.; Deng, W. Q.; Han, K. All- inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from < 2% to 90%. Angew. Chem., Int. Ed. 2020, 59, 12709–12713.
Zeng, R. S; Zhang, L. L.; Xue, Y.; Ke, B.; Zhao, Z.; Huang, D.; Wei, Q. L.; Zhou, W. C.; Zou, B. S. Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 2053–2061.
Zhao, H.; Chordiya, K.; Leukkunen, P.; Popov, A.; Kahaly, M. U.; Kordas, K.; Ojala, S. Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 2021, 14, 1116–1125.
Xiao, G.; Yan, B. B.; Luo, Y. H.; Wen, J. X.; Fan, D. S.; Fu, X. H.; Chu, Y. S.; Zhang, J. Z.; Peng, G. D. Co-doping effect of lead or erbium upon the spectroscopic properties of bismuth doped optical fibres. J. Lumin. 2021, 230, 117726.
Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M = Sc, Y, La): A model system for the study of trivalent s2 ions. J. Phys. C: Solid State Phys. 1986, 19, 3263–3272.
Huang, P.; Zheng, W.; Gong, Z.; You, W.; Wei, J.; Chen, X. Rare earth ion- and transition metal ion-doped inorganic luminescent nanocrystals: From fundamentals to biodetection. Mater. Today Nano 2019, 5, 100031.
Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.
Marin, R.; Jaque, D. Doping lanthanide ions in colloidal semiconductor nanocrystals for brighter photoluminescence. Chem. Rev. 2021, 121, 1425–1462.
Ren, J. J.; Zhou, X. P.; Wang, Y. H. Water triggered interfacial synthesis of highly luminescent CsPbX3: Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 2020, 13, 3387–3395.
Xu, H. Y.; Yu, W. J.; Pan, K.; Wang, G. F.; Zhu, P. F. Confinement and antenna effect for ultrasmall Y2O3: Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.
Shi, H. L.; Han, D.; Chen, S. Y.; Du, M. H. Impact of metal ns2 lone pair on luminescence quantum efficiency in low-dimensional halide perovskites. Phys. Rev. Mater. 2019, 3, 034604.
Zhou, J.; Rong, X. M.; Zhang, P.; Molokeev, M. S.; Wei, P. J.; Liu, Q. L.; Zhang, X. W.; Xia, Z. G. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv. Opt. Mater. 2019, 7, 1801435.
Huang, D. Y.; Dang, P. P.; Wei, Y.; Bai, B.; Lian, H. Z.; Zeng, Q. G.; Lin, J. A deep-red-emitting Bi3+/Mn4+-doped CaLi6La2Nb2O12 phosphor: Luminescence and energy transfer properties. Mater. Res. Bull. 2020, 124, 110743.
Li, G. G.; Lin, J. Recent progress in low-voltage cathodoluminescent materials: Synthesis, improvement and emission properties. Chem. Soc. Rev. 2014, 43, 7099–7131.
Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.
Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1–xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.
Dang, P. P.; Liu, D. J.; Li, G. G.; Kheraif, A. A. A.; Lin, J. Recent advances in bismuth ion-doped phosphor materials: Structure design, tunable photoluminescence properties, and application in white LEDs. Adv. Opt. Mater. 2020, 8, 1901993.
Bednarkiewicz, A.; Marciniak, L.; Carlos, L. D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421.
Bi, H. T.; He, F.; Dong, Y. S.; Yang, D.; Dai, Y. L.; Xu, L. G.; Lv, R. C.; Gai, S. L.; Yang, P. P.; Lin, J. Bismuth nanoparticles with "light" property served as a multifunctional probe for X-ray computed tomography and fluorescence imaging. Chem. Mater. 2018, 30, 3301–3307.
Zhou, Y. D.; Feng, W.; Qian, X. Q.; Yu, L. D.; Han, X. G.; Fan, G. L.; Chen, Y.; Zhu, J. Construction of 2D antimony(Ⅲ) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 19712–19723.
Duo, Y. H.; Huang, Y. Y.; Liang, W. Y.; Yuan, R. M.; Li, Y.; Chen, T. F.; Zhang, H. Ultraeffective cancer therapy with an antimonene-based X-ray radiosensitizer. Adv. Funct. Mater. 2020, 30, 1906010.
Shahbazi, M. A.; Faghfouri, L.; Ferreira, M. P. A.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H. A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321.
Yu, X. J.; Liu, X. Y.; Yang, K.; Chen, X. Y.; Li, W. W. Pnictogen semimetal (Sb, Bi)-based nanomaterials for cancer imaging and therapy: A materials perspective. ACS Nano 2021, 15, 2038–2067.
Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.
Pham-Thi, M. Rare-earth calcium sulfide phosphors for cathode-ray tube displays. J. Alloys Compd. 1995, 225, 547–551.
Sun, X. L.; Hong, G. Y.; Dong, X. Y.; Xiao, D.; Zhang, G. L.; Tang, G. Q.; Chen, W. J. Study of energy transfer between rare earth ions in CaS host by photoluminescence spectra. J. Phys. Chem. Solids 2001, 62, 807–810.
Guo, C. F.; Huang, D. X.; Su, Q. Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng.: B 2006, 130, 189–193.
Burbano, D. C. R.; Sharma, S. K.; Dorenbos, P.; Viana, B.; Capobianco, J. A. Persistent and photostimulated red emission in CaS: Eu2+, Dy3+ nanophosphors. Adv. Opt. Mater. 2015, 3, 551–557.
Wang, J. K.; Zhu, Y. L.; Grimes, C. A.; Nie, Z.; Cai, Q. Y. Eu, Sm, Mn- doped CaS nanoparticles with 59.3% upconversion-luminescence quantum yield: Enabling ultrasensitive and facile smartphone-based sulfite detection. Anal. Chem. 2018, 90, 8658–8664.
Wang, J. K.; He, N.; Zhu, Y. L.; An, Z. B.; Chen, P.; Grimes, C. A.; Nie, Z.; Cai, Q. Y. Highly-luminescent Eu, Sm, Mn-doped CaS up/down conversion nano-particles: Application to ultra-sensitive latent fingerprint detection and in vivo bioimaging. Chem. Commun. 2018, 54, 591–594.
Yamashita, N. Luminescence centers of Ca (S: Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S: Se): Sb3+ phosphors. J. Phys. Soc. Jpn. 1973, 35, 1089–1097.
Zhang, M. S.; Zang, L. N. Rapid synthesis of CaS: Ce3+, Sb3+ phosphor with submicron-scale by microwave radiation method and its luminescence. Rare Metal Mat. Eng. 2002, 31, 69–72.
Smet, P. F.; Moreels, I.; Hens, Z.; Poelman, D. Luminescence in sulfides: A rich history and a bright future. Materials 2010, 3, 2834–2883.
Raubach, C. W.; Gouveia, A. F.; de Santana, Y. V. B.; Varela, J. A.; Ferrer, M. M.; Li, M. S.; Longo, E. Towards controlled synthesis and better understanding of blue shift of the CaS crystals. J. Mater. Chem. C 2014, 2, 2743–2750.
Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-Ⅱ luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 9556–9560.
Zhao, Y. M.; Rabouw, F. T.; van Puffelen, T.; van Walree, C. A.; Gamelin, D. R.; de Mello Donegá, C.; Meijerink, A. Lanthanide-doped CaS and SrS luminescent nanocrystals: A single-source precursor approach for doping. J. Am. Chem. Soc. 2014, 136, 16533–16543.
Burbano, D. C. R.; Rodríguez, E. M.; Dorenbos, P.; Bettinelli, M.; Capobianco, J. A. The near-IR photo-stimulated luminescence of CaS: Eu2+/Dy3+ nanophosphors. J. Mater. Chem. C 2014, 2, 228–231.
Gao, Y.; Li, R. F.; Zheng, W.; Shang, X. Y.; Wei, J. J.; Zhang, M. R.; Xu, J.; You, W. W.; Chen, Z.; Chen, X. Y. Broadband NIR photostimulated luminescence nanoprobes based on CaS: Eu2+, Sm3+ nanocrystals. Chem. Sci. 2019, 10, 5452–5460.
Virdi, G. S.; Singh, N.; Nath, N. Photoluminescence of ion-implanted phosphors. Pramana 1988, 31, 309–312.
Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.
Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.
Asano, S.; Yamashita, N. Luminescence of Sb3+ centers in MgS phosphors. J. Phys. Soc. Jpn. 1980, 49, 2231–2235.
Donker, H.; Yamashita, N.; Smit, W. M. A.; Blasse, G. Luminescence decay times of the Sb3+, Pb2+, and Bi3+ ions in alkaline-earth sulfides. Phys. Status Solidi (B) 1989, 156, 537–544.
Yamashita, N.; Sasaki, Y. I.; Nakamura, K. Photoluminescence of Sb3+ centers in SrS and SrSe. Jpn. J. Appl. Phys. 1992, 31, 2791–2797.
He, Z. Y.; Wang, Y. S.; Sun, L.; Xu, X. R. Optical absorption studies on the trapping states of CaS: Eu, Sm. J. Phys.: Condens. Matter 2001, 13, 3665–3675.
Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, S. G. Jahn-Teller effect in the Sb3+ emission in zircon-structured phosphates. Chem. Phys. Lett. 1984, 112, 547–550.
Weidner, M.; Osvet, A.; Schierning, G.; Batentschuka, M.; Winnackera, A. Influence of dopant compounds on the storage mechanism of CaS: Eu2+, Sm3+. J. Appl. Phys. 2006, 100, 073701.
Huang, B. L. Native point defects in CaS: Focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence. Inorg. Chem. 2015, 54, 11423–11440.
Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 2017, 10, 1840–1846.
Miyakawa, T.; Dexter, D. L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B 1970, 1, 2961.
Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room- temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
Zhang, W.; Wei, J. J.; Gong, Z. L.; Huang, P.; Xu, J.; Li, R. F.; Yu, S. H.; Cheng, X. W.; Zheng, W.; Chen, X. Y. Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals. Adv. Sci. 2020, 7, 2002210.
Stadler, W.; Hofmann, D. M.; Alt, H. C.; Muschik, T.; Meyer, B. K.; Weigel, E.; Müller-Vogt, G.; Salk, M.; Rupp, E.; Benz, K. W. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630.
Ellervee, A. F. Luminescence of Pb2+ and Bi3 + centres in alkali-earth sulphides and oxides. Phys. Status Solidi (B) 1977, 82, 91–98.
Chen, S. Y.; Zhao, X. R.; Chen, J. Y.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem. 2010, 21, 979–987.
Wei, J. J.; Lian, W.; Zheng, W.; Shang, X. Y.; Zhang, M. R.; Dai, T.; Chen, X. Y. Sub-10 nm lanthanide-doped SrFCl nanoprobes: Controlled synthesis, optical properties and bioimaging. J. Rare Earths 2019, 37, 691–698.
Wei, J. J.; Zheng, W.; Shang, X. Y.; Li, R. F.; Huang, P.; Liu, Y.; Gong, Z. L.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing. Sci. China Mater. 2019, 62, 130–137.