AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles

Xiangjun Chen1,§Xiaoxiang Gao2,§Akihiro Nomoto2,§Keren Shi1Muyang Lin2Hongjie Hu1Yue Gu1Yangzhi Zhu2Zhuohong Wu2Xue Chen1Xinyu Wang2Baiyan Qi1Sai Zhou1Hong Ding2Sheng Xu1,2,3,4( )
Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA

§ Xiangjun Chen, Xiaoxiang Gao, and Akihiro Nomoto contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health. Non-contact, capacitive sensing electrodes prevent potential skin irritations, and are thus beneficial for long-term monitoring. Existing capacitive electrodes are either connected to a separate control circuit via external wires or have limited sensing capacitances, which leads to low signal qualities. This study demonstrates a stretchable capacitive sensing device with integrated electrodes and control electronics, with enhanced signal qualities. The electrodes and the control electronics are fabricated on a common fabric substrate for breathability and strain-limiting protection. The stretchable electrodes are based on an island-bridge design with a stretchability as high as ~ 100%, and an area ratio as high as ~ 80%. By using a dielectric calcium copper titanate (CCTO) composite as the adhesive layer, the electrode capacitance can be increased, yielding an enhanced signal-to-noise ratio (SNR) in the acquired biopotentials. This device offers a convenient and comfortable approach for long-term non-contact monitoring of biopotential signals.

Electronic Supplementary Material

Download File(s)
12274_2021_3458_MOESM1_ESM.pdf (2.7 MB)

References

[1]
Brugarolas, R.; Dieffenderfer, J.; Walker, K.; Wagner, A.; Sherman, B.; Roberts, D.; Bozkurt, A. Wearable wireless biophotonic and biopotential sensors for canine health monitoring. In SENSORS, 2014 IEEE, Valencia, Spain, 2014, pp 2203-2206.
[2]
Samol, A.; Bischof, K.; Luani, B.; Pascut, D.; Wiemer, M.; Kaese, S. Single-lead ECG recordings including Einthoven and Wilson Leads by a smartwatch: A new era of patient directed early ECG differential diagnosis of cardiac diseases? Sensors 2019, 19, 4377.
[3]
Ibaida, A.; Khalil, I. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans. Biomed. Eng. 2013, 60, 3322-3330.
[4]
Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
[5]
Dantas, H.; Warren, D. J.; Wendelken, S. M.; Davis, T. S.; Clark, G. A.; Mathews, V. J. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE Trans. Biomed. Eng. 2019, 66, 3192-3203.
[6]
Dias, N. S.; Ferreira, J. F.; Figueiredo, C. P.; Correia, J. H. A wireless system for biopotential acquisition: An approach for non-invasive brain-computer interface. In Proceedings of 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp 2709-2712.
[7]
Lobodzinski, S. S.; Laks, M. M. New devices for very long-term ECG monitoring. Cardiol. J. 2012, 19, 210-214.
[8]
Zehender, M.; Meinertz, T.; Keul, J.; Just, H. ECG variants and cardiac arrhythmias in athletes: Clinical relevance and prognostic importance. Am. Heart J. 1990, 119, 1378-1391.
[9]
Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525-1532.
[10]
Liu, S. H.; Lin, C. B.; Chen, Y.; Chen, W. X.; Huang, T. S.; Hsu, C. Y. An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise. Sensors 2019, 19, 3108.
[11]
Li, G. L.; Wang, S. Z.; Duan, Y. Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens. Actuators B Chem. 2018, 277, 250-260.
[12]
Griffith, M. E.; Portnoy, W. M.; Stotts, L. J.; Day, J. L. Improved capacitive electrocardiogram electrodes for burn applications. Med. Biol. Eng. Comput. 1979, 17, 641-646.
[13]
Spinelli, E.; Haberman, M.; García, P.; Guerrero, F. A capacitive electrode with fast recovery feature. Physiol. Meas. 2012, 33, 1277-1288.
[14]
Sun, Y.; Yu, X. B. Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sens. J. 2016, 16, 2832-2853.
[15]
Portelli, A. J.; Nasuto, S. J. Design and development of non-contact bio-potential electrodes for pervasive health monitoring applications. Biosensors 2017, 7, 2.
[16]
Sundaram, P. S. S.; Basker, N. H.; Natrayan, L. Smart clothes with bio-sensors for ECG monitoring. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 298-301.
[17]
Pehr, S.; Zollitsch, D.; Güttler, J.; Bock, T. Development of a non-contact ECG application unobtrusively embedded into a bed. In Proceedings of 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 2019, pp 1-6.
[18]
Singh, R. K.; Sarkar, A.; Anoop, C. S. A health monitoring system using multiple non-contact ECG sensors for automotive drivers. In Proceedings of 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, China, 2016, pp 1-6.
[19]
Das, P. S.; Park, J. Y. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal Process. Control 2017, 33, 72-82.
[20]
Jeong, J. W.; Kim, M. K.; Cheng, H.; Yeo, W. H.; Huang, X.; Liu, Y. H.; Zhang, Y. H.; Huang, Y. G.; Rogers, J. A. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 2014, 3, 642-648.
[21]
Dong, W. T.; Cheng, X.; Xiong, T.; Wang, X. M. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed. Microdevices 2019, 21, 6.
[22]
Das, P. S.; Kim, J. W.; Park, J. Y. Fashionable wrist band using highly conductive fabric for electrocardiogram signal monitoring. J. Ind. Textiles 2019, 49, 243-261.
[23]
Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219-3226.
[24]
Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.
[25]
Zhang, M. C.; Wang, C. Y.; Liang, X. P.; Yin, Z.; Xia, K. L.; Wang, H. M.; Jian, M. Q.; Zhang, Y. Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater. 2017, 3, 1700193.
[26]
Yuan, L.; Zhang, M.; Zhao, T. T.; Li, T. K.; Zhang, H.; Chen, L. L.; Zhang, J. H. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network. Sens. Actuators A Phys. 2020, 315, 112192.
[27]
Gong, M.; Wan, P. B.; Ma, D.; Zhong, M. J.; Liao, M. H.; Ye, J. J.; Shi, R.; Zhang, L. Q. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 2019, 29, 1902127.
[28]
Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473-480.
[29]
Jang, K. I.; Han, S. Y.; Xu, S.; Mathewson, K. E.; Zhang, Y. H.; Jeong, J. W.; Kim, G. T.; Webb, R. C.; Lee, J. W.; Dawidczyk, T. J. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 2014, 5, 4779.
[30]
Gallone, G.; Carpi, F.; De Rossi, D.; Levita, G.; Marchetti, A. Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate. Mater. Sci. Eng. C 2007, 27, 110-116.
[31]
Bele, A.; Stiubianu, G.; Varganici, C. D.; Ignat, M.; Cazacu, M. Silicone dielectric elastomers based on radical crosslinked high molecular weight polydimethylsiloxane co-filled with silica and barium titanate. J. Mater. Sci. 2015, 50, 6822-6832.
[32]
Cherney, E. A. Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEEE Trans. Dielectrics Electrical Insulat. 2005, 12, 1108-1115.
[33]
Singh, D. P.; Mohapatra, Y. N.; Agrawal, D. C. Dielectric and leakage current properties of sol-gel derived calcium copper titanate (CCTO) thin films and CCTO/ZrO2 multilayers. Mater. Sci. Eng. B 2009, 157, 58-65.
[34]
Duan, L.; Wang, G. L.; Zhang, Y. Y.; Zhang, Y. N.; Wei, Y. Y.; Wang, Z. F.; Zhang, M. High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym. Compos. 2018, 39, 691-697.
[35]
Vlach, K.; Kijonka, J.; Jurek, F.; Vavra, P.; Zonca, P. Capacitive biopotential electrode with a ceramic dielectric layer. Sens. Actuators B Chem. 2017, 245, 988-995.
[36]
Yang, Y.; Hu, H. J.; Chen, Z. Y.; Wang, Z. Y.; Jiang, L. M.; Lu, G. X.; Li, X. J.; Chen, R. M.; Jin, J.; Kang, H. C. et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett. 2020, 20, 4445-4453.
Nano Research
Pages 3248-3252
Cite this article:
Chen X, Gao X, Nomoto A, et al. Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Research, 2021, 14(9): 3248-3252. https://doi.org/10.1007/s12274-021-3458-0
Topics:
Part of a topical collection:

776

Views

14

Crossref

13

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 06 January 2021
Revised: 17 March 2021
Accepted: 21 March 2021
Published: 15 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return