AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage

Zhihui Li1Qingmeng Gan2Yifan Zhang1Jing Hu2Peng Liu1( )Changhong Xu1Xibing Wu1Yilin Ge1Feng Wang1Qingrong Yao1Zhouguang Lu2( )Jianqiu Deng1( )
School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials Guilin University of Electronic TechnologyGuilin 541004 China
Department of Materials Science and Engineering Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices Southern University of Science and TechnologyShenzhen 518055 China
Show Author Information

Graphical Abstract

Abstract

Potassium-ion batteries (PIBs) are promising next-generation energy storage candidates due to abundant resources and low cost. Sb-based materials with high theoretical capacity (660 mAh·g–1) and low working potential are considered as promising anode for PIBs. The remaining challenge is poor stability and slow kinetics. In this work, FeSb@N-doped carbon quantum dots anchored in three-dimensional (3D) porous N-doped carbon (FeSb@C/N⊂3DC/N), a Sb-based material with a particular structure, is designed and constructed by a green salt-template method. As an anode for PIBs, it exhibits extraordinarily high-rate and long-cycle stability (a capacity of 245 mAh·g–1 at 3, 080 mA·g–1 after 1, 000 cycles). The pseudocapacitance contribution (83%) is demonstrated as the origin of high-rate performance of the FeSb@C/N⊂3DC/N electrode. Furthermore, the potassium storage mechanism in the electrode is systematically investigated through ex-situ characterization techniques including ex-situ transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Overall, this study could provide a useful guidance for future design of high-performance electrode materials for PIBs.

Electronic Supplementary Material

Download File(s)
12274_2021_3462_MOESM1_ESM.pdf (3.2 MB)

References

1

Li, H. Practical evaluation of Li-ion batteries. Joule 2019, 3, 911–914.

2

Zhang, W. L.; Zhang, F.; Ming, F. W.; Alshareef, H. N. Sodium-ion battery anodes: Status and future trends. EnergyChem 2019, 1, 100012.

3

Palomares, V.; Casas-Cabanas, M.; Castillo-Martínez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

4

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

5

Vaalma, C.; Buchholz, D.; Passerini, S. Non-aqueous potassium-ion batteries: A review. Curr. Opin. Electrochem. 2018, 9, 41–48.

6

Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802–809.

7

Pan, Q. G.; Gong, D. C.; Tang, Y. B. Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 2020, 31, 328–343.

8

Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

9

Jiang, G. S.; Xu, X. S.; Han, H J.; Qu, C. Z.; Repich, H.; Xu, F.; Wang, H. Q. Edge-enriched MoS2 for kinetics-enhanced potassium storage. Nano Res. 2020, 13, 2763–2769.

10

Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 2018, 8, 1702384.

11

Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

12

Wang, W. K.; Ji B. F.; Yao, W. J.; Zhang, X. Y.; Zheng, Y. P.; Zhou, X. L.; Kidkhunthod, P.; He, H. Y.; Tang, Y. B. A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage. Sci. China Mater. 2021, 64, 1047–1057.

13

Zheng, J. F.; Wu, Y. J.; Sun, Y. J.; Rong, J. H.; Li, H. Y.; Niu, L. Advanced anode materials of potassium ion batteries: From zero dimension to three dimensions. Nano-Micro Lett. 2021, 13, 12.

14

Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

15

Zhang, H. H.; He, H. N.; Luan, J. Y.; Huang, X. B.; Tang, Y. G.; Wang, H. Y. Adjusting the yolk-shell structure of carbon spheres to boost the capacitive K+ storage ability. J. Mater. Chem. A 2018, 6, 23318–23325.

16

Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103–8110.

17

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

18

Sultana, I.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Potassium- ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.

19

Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

20

Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

21

Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. A. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.

22

Wang, B. Y.; Deng, Z. W.; Xia, Y. T.; Hu, J. X.; Li, H. J.; Wu, H.; Zhang, Q. B.; Zhang, Y.; Liu, H. K.; Dou, S. X. Realizing reversible conversion-alloying of Sb(Ⅴ) in polyantimonic acid for fast and durable lithium-and potassium-ion storage. Adv. Energy Mater. 2020, 10, 1903119.

23

Liu, Q.; Fan, L.; Chen, S. H.; Su, S. L.; Ma, R. F.; Han, X.; Lu, B. A. Antimony–graphite composites for a high-performance potassium-ion battery. Energy Technol. 2019, 7, 1900634.

24

Madec, L.; Gabaudan, V.; Gachot, G.; Stievano, L.; Monconduit, L.; Martinez, H. Paving the way for K-ion batteries: Role of electrolyte reactivity through the example of Sb-based electrodes. ACS Appl. Mater. Interfaces 2018, 10, 34116–34122.

25

Meng, W. J.; Guo, M. Q.; Liu, X.; Chen, J. J.; Bai, Z. C.; Wang, Z. H. Spherical nano Sb@HCMs as high-rate and superior cycle performance anode material for sodium-ion batteries. J. Alloys Compd. 2019, 795, 141–150.

26

Li, H. M.; Wang, K. L.; Zhou, M.; Li, W.; Tao, H. W.; Wang, R. X.; Cheng, S. J.; Jiang, K. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano 2019, 13, 9533–9540.

27

Liu, D. Y.; Yang, L.; Chen, Z. Y.; Zou, G. Q.; Hou, H. S.; Hu, J. G.; Ji, X. B. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci. Bull. 2020, 65, 1003–1012.

28

Yang, L. P.; Huang, Y. L.; Li, X. Y.; Sheng, J.; Li, F.; Xie, Z. J.; Zhou, Z. Micro/nanostructure-dependent electrochemical performances of Sb2O3 micro-bundles as anode materials for sodium-ion batteries. ChemElectroChem 2018, 5, 2522–2527.

29

An, Y. L.; Tian, Y.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018, 12, 12932–12940.

30

Han, Y.; Li, T. Q.; Li, Y.; Tian, J.; Yi, Z.; Lin, N.; Qian, Y. T. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater. 2019, 20, 46–54.

31

Wang, H.; Wu, X.; Qi, X. J.; Zhao, W.; Ju, Z. C. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37.

32

Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

33

Liu, H. J.; Wang, Z. J.; Wu, Z. H.; Zhang, S.; Ge, S. H.; Guo, P.; Hua, M. L.; Lu, X. Q.; Wang, S. T.; Zhang, J. Direct tuning of meso-/micro-porous structure of carbon nanofibers confining Sb nanocrystals for advanced sodium and potassium storage. J. Alloy. Compd. 2020, 833, 155127.

34

Zhang, Y. F.; Li, M.; Huang, F. B.; Li, Y. S.; Xu, Y. Q.; Wang, F.; Yao, Q. R.; Zhou, H. Y.; Deng, J. Q. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries. Appl. Surf. Sci. 2020, 499, 143907.

35

Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020, 14, 1018–1026.

36

Han, J.; Zhu, K. J.; Liu, P.; Si, Y. C.; Chai, Y. J.; Jiao, L. F. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries. J. Mater. Chem. A 2019, 7, 25268–25273.

37

Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, X.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; He, C. N. et al. Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem. Eng. J. 2020, 384, 123327.

38

Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

39

Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.

40

Li, P. H; Yang, Y.; Gong, S.; Lv, F.; Wang, W.; Li, Y. J.; Luo, M. C.; Xing, Y.; Wang, Q.; Guo, S. J. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra- stable sodium-ion batteries. Nano Res. 2019, 12, 2218–2223.

41

Kim, H.; Lim, H.; Kim, H. S.; Kim, K. J.; Byun, D.; Choi, W. Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 2019, 12, 397–404.

42

Jin, Q. Z.; Li, W.; Wang, K. L.; Li, H. M.; Feng, P. Y.; Zhang, Z. C.; Wang, W.; Jiang, K. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high- performance sodium storage. Adv. Funct. Mater. 2020, 30, 1909907.

43

Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.

44

Li, W. D.; Wang, D. Z.; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Superior potassium-ion storage properties by engineering pseudocapacitive sulfur/nitrogen-containing species within three- dimensional flower-like hard carbon architectures. Carbon 2020, 161, 97–107.

45

Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao N. Q. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether- based electrolytes toward high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 14309–14318.

46

Zhang, Y.; Zai, J. T.; He, K.; Qian X. F. Fe3C nanoparticles encapsulated in highly crystalline porous graphite: Salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. Chem. Commun. 2018, 54, 3158–3161.

47

Ding, R.; Chen, Q.; Luo, Q.; Zhou, L. X.; Wang, Y.; Zhang, Y.; Fan G. Y. Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: Excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22, 835–842.

48

Chen, Z.; Liao, J. X.; Li, W. L.; Song, Y. C.; Chen, C.; Yang, J.; Xu, Z. Q.; Feng, T. T.; Wu, M. Q. Activation-free N-doped porous carbon to enhance surface-driven K storage vs. intercalation dominated Na storage. Appl. Surf. Sci. 2020, 506, 144909.

49

Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708–5717.

50

Nithya, C.; Thiyagaraj, G. Morphology oriented CuS nanostructures: Superior K-ion storage using surface enhanced pseudocapacitive effects. Sustainable Energy Fuels 2020, 4, 3574–3587.

51

Wang, H. Q.; Yang, G. H.; Cui, L. S.; Li, Z. S.; Yan, Z. X.; Zhang, X. H.; Huang, Y. G.; Li, Q. Y. Controlled synthesis of three- dimensional interconnected graphene-like nanosheets from graphite microspheres as high-performance anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 21298–21307.

52

Wang, H. Q.; Zhang, D. C.; Zhang, X. H.; Li, Z. S.; Yang, G. H.; Wu, Y. S.; Ji, J. J.; Li, Q. Y. Sustainable synthesis of Co NPs@Graphited carbon microspheres as an efficient electrocatalyst for the oxygen- evolution reaction. Chem. Eng. J. 2016, 294, 193–201.

53

Liu, L. Z.; Zeng, G.; Chen, J. X.; Bi, L. L.; Dai, L. M.; Wen, Z. H. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 2018, 49, 393–402.

54

He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250–260.

55

Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418–2432.

56

Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724.

57

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

58

Birchall, T.; Connor, J. A.; Hillier, L. H. High-energy photoelectron spectroscopy of some antimony compounds. J. Chem. Soc., Dalton Trans. 1975, 2003–2006.

59

Li, T. F.; Li, M.; Zhang, M. R.; Li, X.; Liu, K. H.; Zhang, M. Y.; Liu, X. E; Sun, D. M.; Xu, L.; Zhang, Y. W. et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon 2019, 153, 364–371.

60

Wang, Q. C.; Lei, Y. P.; Chen, Z. Y.; Wu, N.; Wang, Y. B.; Wang, B.; Wang, Y. D. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 516–526.

61

He, H. N.; Sun, D.; Tang, Y. G.; Wang, H. Y.; Shao, M. H. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233-251.

62

Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

63

Gao, L. Q.; Xiao, M. L.; Jin, Z.; Liu, C. P.; Zhu, J. B.; Ge, J. J.; Xing, W. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem. 2018, 27, 1668–1673.

64

Li, B.; Li, S. X.; Jin, Y.; Zai, J. T.; Chen, M.; Nazakat, A.; Zhan, P.; Huang, Y.; Qian, X. F. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. J. Mater. Chem. A 2018, 6, 21098–21103.

65

Chen, M.; Zhou, Q. N.; Iqbal, A.; Liu, X. J.; Nazakat, A.; Yan, C. Y.; Tian, H.; Li, W. Q.; Zhang, Y. C.; Dong, B. X.; Zai, J. T.; Qian, X. F. Self-supported NaTi2(PO4)3 nanorod arrays: Balancing Na+ and electron kinetics via optimized carbon coating for high-power sodium-ion capacitor. ACS Appl. Mater. Interfaces 2020, 12, 50388– 50396.

66

Chen, M.; Zhou. Q. N.; Zai, J. T.; Iqbal, A.; Tsega, T. T.; Dong, B. X.; Liu, X. J.; Zhang, Y. C.; Yan, C. Y.; Zhao, L. et al. High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics. Nano Res. 2021, 14, 1004–1011.

67

Zhao, K. N.; Zhang, L.; Xia, R.; Dong, Y. F.; Xu, W. W.; Niu, C. J.; He, L.; Yan, M. Y.; Qu, L. B.; Mai, L. Q. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588–594.

68

Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

69

Yi, Z. B.; Liu, Y.; Li, Y. Z.; Zhou, L. J.; Wang, Z. Y.; Zhang, J. Q.; Cheng, H.; Lu, Z. G. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high-performance anode for potassium-ion batteries. Small 2020, 16, 1905301.

70

Fan, B. B.; Yan, J. X.; Hu, A. P.; Liu, Z.; Li, W. Z.; Li, Y. H.; Xu, Y. L.; Zhang, Y.; Tang, Q. L.; Chen, X. H. et al. High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur Co-doped carbon. Carbon 2020, 164, 1–11.

71

Bai, J.; Xi, B. J.; Mao, H. Z.; Lin, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 2018, 30, 1802310.

72

Liu, M. Q.; Chang, L. M.; Wang, J.; Li, J. H.; Jiang, J. M.; Pang, G.; Wang, H. R.; Nie, P.; Zhao, C. M.; Xu, T. H. et al. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J. Power Sources 2020, 469, 228415.

73

Chandra, M.; Khan, T. S.; Shukla, R.; Ahamad, S.; Gupta, A.; Basu, S.; Haider, M. A.; Dhaka, R. S. Diffusion coefficient and electrochemical performance of NaVO3 anode in Li/Na batteries. Electrochim. Acta 2020, 331, 135293.

74

Wu, X. B.; Qin, N.; Wang, F.; Li, Z. H.; Qin, J. Y.; Huang, G. J.; Wang, D. H.; Liu, P.; Yao, Q. R.; Lu, Z. G. et al. Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries. Energy Storage Mater. 2021, 37, 619–627.

75

Wang, M. S.; Peng, A. M.; Xu, H.; Yang, Z. L.; Zhang, L.; Zhang, J.; Yang, H.; Chen, J. C.; Huang, Y.; Li, X. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. J. Power Sources 2020, 469, 228414.

76

Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

77

Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

Nano Research
Pages 217-224
Cite this article:
Li Z, Gan Q, Zhang Y, et al. FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage. Nano Research, 2022, 15(1): 217-224. https://doi.org/10.1007/s12274-021-3462-4
Topics:

893

Views

25

Crossref

31

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 18 January 2021
Revised: 16 March 2021
Accepted: 21 March 2021
Published: 26 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return