AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency

Yang Li1Yong Qian2Jie Zhou1Ning Lin1( )Yitai Qian1,2( )
Department of Applied Chemistry University of Science and Technology of ChinaHefei 230026 China
Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of ChinaHefei 230026 China
Show Author Information

Graphical Abstract

Abstract

The low initial Coulombic efficiency (ICE) of SiOx anode caused by the irreversible generation of LiySiOz and Li2O during lithiation process limits its application for high energy-density lithium-ion batteries. Herein, we report a molten-salt-induced thermochemical prelithiation strategy for regulating the electrochemically active Si/O ratio of SiOx and thus enhancing ICE through thermal treatment of pre-synthesized LiNH2-coated SiOx in molten LiCl at 700 ℃. Bulk SiOx micro-particle was transformed into pomegranate- like prelithiated micro-cluster composite (M-Li-SiOx) with SiOx core and outer nano-sized agglomerates consisting of Li2Si2O5, SiO2, and Si. Through the analysis of the reaction intermediates, molten-LiCl could initiate reactions and promote mass transfer by the continuous extraction of oxygen component from SiOx particle inner in the form of inert Li2Si2O5 and SiO2 nanotubes to realize the prelithiation. The degree of prelithiation can be regulated by adjusting the coating amount of LiNH2 layer, and the resulted M-Li- SiOx displays a prominent improvement of ICE from 58.73% to 88.2%. The graphite/M-Li-SiOx (8:2) composite electrode delivers a discharge capacity of 497.29 mAh·g−1 with an ICE of 91.79%. By pairing graphite/M-Li-SiOx anode and LiFePO4 cathode in a full-cell, an enhancement of energy density of 37.25% is realized compared with the full-cell containing graphite/SiOx anode. Furthermore, ex-situ X-ray photoelectron spectroscopy (XPS)/Raman/X-ray diffraction (XRD) and related electrochemical measurements reveal the SiOx core and Si of M-Li-SiOx participate in the lithiation, and pre-generated Li2Si2O5 with Li+ diffusivity and pomegranate-like structure reduces the reaction resistance and interface impedance of the solid electrolyte interphase (SEI) film.

Electronic Supplementary Material

Download File(s)
12274_2021_3464_MOESM1_ESM.pdf (3.5 MB)

References

1

Yi, X. H.; Ge, J. M.; Zhou, J. W.; Zhou, J.; Lu, B. A. SbVO4 based high capacity potassium anode: A combination of conversion and alloying reactions. Sci. China Chem. 2021, 64, 238–244.

2

Gao, J. W.; Xie, X. S.; Liang, S. Q.; Lu, B. A.; Zhou, J. Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 2021, 13, 69.

3

Liu, Q.; Rao, A. M.; Han, X. Lu, B. A. Artificial SEI for superhigh- performance K-graphite anode. Adv. Sci. 2021, 2003639.

4

Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 2021, 11, 2000808.

5

Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

6

Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.

7

Liu, Z. H.; Yu, Q.; Zhao, Y. L.; He, R. H.; Xu, M.; Feng, S. H.; Li, S. D.; Zhou, L.; Mai, L. Q. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309.

8

Kitada, K.; Pecher, O.; Magusin, P. C. M. M.; Groh, M. F.; Weatherup, R. S.; Grey, C. P. Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy. J. Am. Chem. Soc. 2019, 141, 7014–7027.

9

Takezawa, H.; Iwamoto, K.; Ito, S.; Yoshizawa, H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. J. Power Sources 2013, 244, 149–157.

10

Yamada, M.; Inaba, A.; Ueda, A.; Matsumoto, K.; Iwasaki, T.; Ohzuku, T. Reaction mechanism of "SiO"-carbon composite- negative electrode for high-capacity lithium-ion batteries. J. Electrochem. Soc. 2012, 159, A1630.

11

Sun, Y. M.; Lee, H. W.; Seh, Z. W.; Liu, N.; Sun, J.; Li, Y. Z.; Cui, Y. High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy 2016, 1, 15008.

12

Meng, Q. H.; Li, G.; Yue, J. P.; Xu, Q.; Yin, Y. X.; Guo, Y. G. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062–32068.

13

Shen, Y. F.; Zhang, J. M.; Pu, Y. F.; Wang, H.; Wang, B.; Qian, J. F.; Cao, Y. L.; Zhong, F. P.; Ai, X. P.; Yang, H. X. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 2019, 4, 1717–1724.

14

Liu, N.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 5, 6487–6493.

15

Xu, H.; Li, S.; Zhang, C.; Chen, X. L.; Liu, W. J.; Zheng, Y. H.; Xie, Y.; Huang, Y. H.; Li, J. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 2019, 12, 2991–3000.

16

Aminu, I. S.; Geaney, H.; Imtiaz, S.; Adegoke, T. E.; Kapuria, N.; Collins, G. A.; Ryan, K. M. A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes. Adv. Funct. Mater. 2020, 30, 2003278.

17

Yan, M. Y.; Li, G.; Zhang, J.; Tian, Y. F.; Yin, Y. X.; Zhang, C. J.; Jiang, K. C.; Xu, Q.; Li, H. L.; Guo, Y. G. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 27202–27209.

18

Zhang, X. X.; Qu, H. N.; Ji, W. X.; Zheng, D.; Ding, T. Y.; Qiu, D. T.; Qu, D. Y. An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. J. Power Sources 2020, 478, 229067.

19

Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2016, 16, 282–288.

20

Zhao, J.; Lee, H. W.; Sun, J.; Yan, K.; Liu, Y. Y.; Liu, W.; Lu, Z. D.; Lin, D. C.; Zhou, G. M.; Cui, Y. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc. Natl. Acad. Sci. USA 2016, 113, 7408–7413.

21

Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K. W.; Hong, J.; Lee, M. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes. Angew. Chem., Int. Ed. 2020, 59, 14473–14480.

22

Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges. Batteries 2018, 4, 4.

23

Li, X.; Sun, X. H.; Hu, X. D.; Fan, F. R.; Cai, S.; Zheng, C. M.; Stucky, G. D. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143.

24

Sun, C. K.; Zhang, X.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater. 2020, 32, 497–516.

25

Veluchamy, A.; Doh, C. H.; Kim, D. H.; Lee, J. H.; Lee, D. J.; Ha, K. H.; Shin, H. M.; Jin, B. S.; Kim, H. S.; Moon, S. I. et al. Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J. Power Sources 2009, 188, 574–577.

26

Feng, X. J.; Yang, J.; Lu, Q. W.; Wang, J. L.; Nuli, Y. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14420–14426.

27

Jeong, G.; Kim, Y. U.; Krachkovskiy, S. A.; Lee, C. K. A nanostructured SiAl0.2O anode material for lithium batteries. Chem. Mater. 2010, 22, 5570–5579.

28

Zhang, Y.; Guo, G. N.; Chen, C.; Jiao, Y. C.; Li, T. T.; Chen, X.; Yang, Y. C.; Yang, D.; Dong, A. G. An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes. J. Power Sources 2019, 426, 116–123.

29

Yom, J. H.; Hwang, S. W.; Cho, S. M.; Yoon, W. Y. Improvement of irreversible behavior of SiO anodes for lithium ion batteries by a solid state reaction at high temperature. J. Power Sources 2016, 311, 159–166.

30

Johnson, W. C.; Meyer, A. W. The properties of solutions of metals in liquid ammonia. Chem. Rev. 1931, 8, 273–301.

31

Yoo, S.; Kim, J. H.; Kang, B. Characterizing local structure of SiOx using confocal μ-Raman spectroscopy and its effects on electrochemical property. Electrochim. Acta 2016, 212, 68–75.

32

Nguyen, T.; Lefrant, S. XPS study of SiO thin films and SiO-metal interfaces. J. Phys.: Condens. Matter 1989, 1, 5197.

33

Zhou, D. Y.; Zu, F. S.; Zhang, Y. J.; Shi, X. B.; Aziz, H.; Liao, L. S. Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant. Appl. Phys. Lett. 2014, 105, 083301.

34

Eladgham, E. H.; Demchenko, D. O.; Nakagawara, T. A.; Özgür, Ü.; Arachchige, I. U. Facile synthesis of highly luminescent lithium silicate nanocrystals with varying crystal structures and morphology. CrystEngComm 2019, 21, 1974–1983.

35

de Jong, B. H. W. S.; Supèr, H. T. J.; Spek, A. L.; Veldman, N.; Nachtegaal, G.; Fischer, J. C. Mixed alkali systems: Structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5. Acta Cryst. Sec. B 1998, 54, 568–577.

36

Gregory, D. H. Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. J. Mater. Chem. 2008, 18, 2321–2330.

37

Zhang, H. Y.; Hu, R. Z.; Liu, Y. X.; Cheng, X.; Liu, J. W.; Lu, Z. C.; Zeng, M. Q.; Yang, L. C.; Liu, J.; Zhu, M. Highly reversible conversion reaction in Sn2Fe@SiOx nanocomposite: A high initial Coulombic efficiency and long lifetime anode for lithium storage. Energy Storage Mater. 2018, 13, 257–266.

38

Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2089.

39

Jung, S. C.; Kim, H. J.; Kim, J. H.; Han, Y. K. Atomic-level understanding toward a high-capacity and high-power silicon oxide (SiO) material. J. Phys. Chem. C 2016, 120, 886–892.

Nano Research
Pages 230-237
Cite this article:
Li Y, Qian Y, Zhou J, et al. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Research, 2022, 15(1): 230-237. https://doi.org/10.1007/s12274-021-3464-2
Topics:

923

Views

39

Crossref

41

Web of Science

42

Scopus

2

CSCD

Altmetrics

Received: 10 February 2021
Revised: 13 March 2021
Accepted: 22 March 2021
Published: 24 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return