Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Development of cost-effective and highly-efficient bifunctional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts is crucial for overall water splitting in practical utilization. Herein, we proposed a novel non-noble metal bifunctional HER/OER electrocatalyst by synergistically coupling a dual-active Co-based heterojunction (Co-CoO) with high conductive and stable two-dimensional Ti3C2-MXene (defined as Co-CoO/Ti3C2-MXene). A series of characterizations and theoretical calculations verify that the synergistic effect of metallic Co with HER activity and CoO with OER performance leads to superb bifunctional catalytic performance, and Ti3C2-MXene can enhance electrical conductivity and prevent the aggregation of the Co-based catalysts, thereby improving both the activity and stability. Co-CoO/Ti3C2-MXene presents low onset potential (ηonset) of 8 mV and Tafel slope of 47 mV·dec−1 for HER (close to that of Pt/C) and ηonset of 196 mV and Tafel slope of 47 mV·dec−1 for OER (superior to that of RuO2). Assembled as an electrolyzer, Co-CoO/Ti3C2-MXene shows a low voltage of 1.55 V at 10 mA·cm−2, high Faradaic efficiency and remarkable stability. It can be driven by a solar cell of ~ 1.55 V for consecutive production of hydrogen and oxygen gases.
Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.
Wu, X. H.; Wang, Z. Y.; Yu, M. Z.; Xiu, L. Y.; Qiu, J. S. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.
Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.
Zhao, Y. Q.; Ling, T.; Chen, S. M.; Jin, B.; Vasileff, A.; Jiao, Y.; Song, L.; Luo, J.; Qiao, S. Z. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 12252–12257.
Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J. H.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.
Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced Graphene Oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.
Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.
Duan, J. J.; Chen, S.; Vasileff, A.; Qiao, S. Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 2016, 10, 8738–8745.
Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res. 2014, 7, 1280–1290.
Xu, J. Q.; Li, X. D.; Ju, Z. Y.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Wang, C. M.; Yan, W. S.; Ju, H. X.; Zhu, J. F. et al. Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt(Ⅱ) oxide atomic Layers. Angew. Chem., Int. Ed. 2019, 58, 3032–3036.
Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface- directed assembly. Nano Res. 2016, 9, 713–725.
Indra, A.; Song, T.; Paik, U. Metal organic framework derived materials: Progress and prospects for the energy conversion and storage. Adv. Mater. 2018, 30, 1705146.
Zhang, C.; Antonietti, M.; Fellinger, T. P. Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv. Funct. Mater. 2014, 24, 7655–7665.
Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.
Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Gao, R.; Luo, D.; Bai, Z. Y.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 2020, 11, 5858.
Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.
Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-Air batteries. Adv. Mater. 2019, 31, 1901666.
Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.
Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped Carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.
Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition- metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.
Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.
Karim, M. R.; Shinoda, H.; Nakai, M.; Hatakeyama, K.; Kamihata, H.; Matsui, T.; Taniguchi, T.; Koinuma, M.; Kuroiwa, K.; Kurmoo, M. et al. Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid. Adv. Funct. Mater. 2013, 23, 323–332.
Zeng, C.; Xie, F. X.; Yang, X. F.; Jaroniec, M.; Zhang, L.; Qiao, S. Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540–8544.
Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self- assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric Capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.
Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Appl. Catal. B Environ. 2019, 243, 253–261.
Gogotsi, Y.; Yakobson, B. I. Nested hybrid nanotubes. Science 2020, 367, 506–507.
Liu, X. X.; Zang, J. B.; Chen, L.; Chen, L. B.; Chen, X.; Wu, P.; Zhou, S. Y.; Wang, Y. H. A microwave-assisted synthesis of CoO@Co core-shell structures coupled with N-doped reduced graphene oxide used as a superior multi-functional electrocatalyst for hydrogen evolution, oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 2017, 5, 5865–5872.
Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-Air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.
He, W. H.; Wang, Y.; Jiang, C. H.; Lu, L. H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts. Chem. Soc. Rev. 2016, 45, 2396–2409.
Alameda, L. T.; Lord, R. W.; Barr, J. A.; Moradifar, P.; Metzger, Z. P.; Steimle, B. C.; Holder, C. F.; Alem, N.; Sinnott, S. B.; Schaak, R. E. Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures. J. Am. Chem. Soc. 2019, 141, 10852–10861.
Pang, S. Y.; Wong, Y. T.; Yuan, S. G.; Liu, Y.; Tsang, M. K.; Yang, Z. B.; Huang, H. T.; Wong, W. T.; Hao, J. H. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616.
Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.
Xiong, P.; Sun, B.; Sakai, N.; Ma, R. Z.; Sasaki, T.; Wang, S. J.; Zhang, J. Q.; Wang, G. X. 2D superlattices for efficient energy storage and conversion. Adv. Mater. 2020, 32, 1902654.
Du, C. F.; Sun, X. L.; Yu, H.; Liang, Q. H.; Dinh, K. N.; Zheng, Y.; Luo, Y. B.; Wang, Z. G.; Yan, Q. Y. Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based MXene. Adv Sci. 2019, 6, 1900116.
Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880.
Zhu, X. D.; Xie, Y.; Liu, Y. T. Exploring the synergy of 2D MXene- supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 21255–21260.
He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2020, 272, 119006.
Zhao, L.; Dong, B. L.; Li, S. Z.; Zhou, L. J.; Lai, L. F.; Wang, Z. W.; Zhao, S. L.; Han, M.; Gao, K.; Lu, M. et al. Interdiffusion reaction- assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx Nanosheets for electrocatalytic oxygen evolution. ACS Nano 2017, 11, 5800–5807.
Attanayake, N. H.; Abeyweera, S. C.; Thenuwara, A. C.; Anasori, B.; Gogotsi, Y.; Sun, Y. G.; Strongin, D. R. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst. J. Mater. Chem. A 2018, 6, 16882–16889.
Eames, C.; Islam, M. S. Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials. J. Am. Chem. Soc. 2014, 136, 16270–16276.
Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.
Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/ MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.
Tang, R.; Zhou, S.; Li, C.; Chen, R.; Zhang, L.; Zhang, Z.; Yin, L. Janus-structured Co-Ti3C2 MXene Quantum dots as a schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 2020, 30, 20200637.
Xiu, L. Y.; Wang, Z. Y.; Yu, M. Z.; Wu, X. W.; Qiu, J. S. Aggregation- resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028.
Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.
Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.
Selvam, N. C. S.; Lee, J.; Choi, G. H.; Oh, M. J.; Xu, S. Y.; Lim, B.; Yoo, P. J. MXene supported CoxAy (A = OH, P, Se) electrocatalysts for overall water splitting: Unveiling the role of anions in intrinsic activity and stability. J. Mater. Chem. A 2019, 7, 27383–27393.
Yoon, Y.; Tiwari, A. P.; Lee, M.; Choi, M.; Song, W.; Im, J.; Zyung, T.; Jung, H. K.; Lee, S. S.; Jeon, S. et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A 2018, 6, 20869–20877.
Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.
Benchakar, M.; Bilyk, T.; Garnero, C.; Loupias, L.; Morais, C.; Pacaud, J.; Canaff, C.; Chartier, P.; Morisset, S.; Guignard, N. et al. MXene supported cobalt layered double hydroxide nanocrystals: Facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst. Adv. Mater. Interfaces 2019, 6, 1901328.
Huang, H. S.; Song, Y.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl. Catal. B Environ. 2019, 251, 154–161.
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.
Anasori, B.; Lukatskaya M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.
Zhang, C. F.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.
Tarnev, T.; Aiyappa, H. B.; Botz, A.; Erichsen, T.; Ernst, A.; Andronescu, C.; Schuhmann, W. Scanning electrochemical cell microscopy investigation of single ZIF-derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 14265–14269.
Xu, J. Y.; Li, J. J.; Xiong, D. H.; Zhang, B. S.; Liu, Y. F.; Wu, K. H.; Amorim, I.; Li, W.; Liu, L. F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476.
Xu, K.; Cheng, H.; Liu, L. Q.; Lv, H. F.; Wu, X. J.; Wu, C. Z.; Xie, Y. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett. 2017, 17, 578–583.
Kuznetsov, D. A.; Chen, Z. X.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816.
Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.
Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 2019, 31, 1904548.
Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J. et al. Coordination geometry and oxidation state requirements of corner- sharing MnO6 octahedra for water oxidation catalysis: An investigation of manganite (γ-MnOOH). ACS Catal. 2016, 6, 2089–2099.