AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting

Dezheng Guo1Xin Li2Yanqing Jiao1Haijing Yan1( )Aiping Wu1Ganceng Yang1Yu Wang1Chungui Tian1Honggang Fu1( )
Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China Heilongjiang UniversityHarbin 150080 China
Department of Cardiovascular Medicine Heilongjiang Provincial HospitalHarbin 150080 China
Show Author Information

Graphical Abstract

Abstract

Development of cost-effective and highly-efficient bifunctional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts is crucial for overall water splitting in practical utilization. Herein, we proposed a novel non-noble metal bifunctional HER/OER electrocatalyst by synergistically coupling a dual-active Co-based heterojunction (Co-CoO) with high conductive and stable two-dimensional Ti3C2-MXene (defined as Co-CoO/Ti3C2-MXene). A series of characterizations and theoretical calculations verify that the synergistic effect of metallic Co with HER activity and CoO with OER performance leads to superb bifunctional catalytic performance, and Ti3C2-MXene can enhance electrical conductivity and prevent the aggregation of the Co-based catalysts, thereby improving both the activity and stability. Co-CoO/Ti3C2-MXene presents low onset potential (ηonset) of 8 mV and Tafel slope of 47 mV·dec−1 for HER (close to that of Pt/C) and ηonset of 196 mV and Tafel slope of 47 mV·dec−1 for OER (superior to that of RuO2). Assembled as an electrolyzer, Co-CoO/Ti3C2-MXene shows a low voltage of 1.55 V at 10 mA·cm−2, high Faradaic efficiency and remarkable stability. It can be driven by a solar cell of ~ 1.55 V for consecutive production of hydrogen and oxygen gases.

Electronic Supplementary Material

Video
12274_2021_3465_MOESM1_ESM.mp4
12274_2021_3465_MOESM2_ESM.mp4
Download File(s)
12274_2021_3465_MOESM3_ESM.pdf (9.1 MB)

References

1

Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

2

Wu, X. H.; Wang, Z. Y.; Yu, M. Z.; Xiu, L. Y.; Qiu, J. S. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.

3

Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.

4

Zhao, Y. Q.; Ling, T.; Chen, S. M.; Jin, B.; Vasileff, A.; Jiao, Y.; Song, L.; Luo, J.; Qiao, S. Z. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 12252–12257.

5

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J. H.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

6

Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced Graphene Oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

7

Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.

8

Duan, J. J.; Chen, S.; Vasileff, A.; Qiao, S. Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 2016, 10, 8738–8745.

9

Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res. 2014, 7, 1280–1290.

10

Xu, J. Q.; Li, X. D.; Ju, Z. Y.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Wang, C. M.; Yan, W. S.; Ju, H. X.; Zhu, J. F. et al. Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt(Ⅱ) oxide atomic Layers. Angew. Chem., Int. Ed. 2019, 58, 3032–3036.

11

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface- directed assembly. Nano Res. 2016, 9, 713–725.

12

Indra, A.; Song, T.; Paik, U. Metal organic framework derived materials: Progress and prospects for the energy conversion and storage. Adv. Mater. 2018, 30, 1705146.

13

Zhang, C.; Antonietti, M.; Fellinger, T. P. Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv. Funct. Mater. 2014, 24, 7655–7665.

14

Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

15

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Gao, R.; Luo, D.; Bai, Z. Y.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 2020, 11, 5858.

16

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

17

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-Air batteries. Adv. Mater. 2019, 31, 1901666.

18

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

19

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped Carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

20

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition- metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

21

Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.

22

Karim, M. R.; Shinoda, H.; Nakai, M.; Hatakeyama, K.; Kamihata, H.; Matsui, T.; Taniguchi, T.; Koinuma, M.; Kuroiwa, K.; Kurmoo, M. et al. Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid. Adv. Funct. Mater. 2013, 23, 323–332.

23

Zeng, C.; Xie, F. X.; Yang, X. F.; Jaroniec, M.; Zhang, L.; Qiao, S. Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540–8544.

24

Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self- assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric Capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.

25

Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Appl. Catal. B Environ. 2019, 243, 253–261.

26

Gogotsi, Y.; Yakobson, B. I. Nested hybrid nanotubes. Science 2020, 367, 506–507.

27

Liu, X. X.; Zang, J. B.; Chen, L.; Chen, L. B.; Chen, X.; Wu, P.; Zhou, S. Y.; Wang, Y. H. A microwave-assisted synthesis of CoO@Co core-shell structures coupled with N-doped reduced graphene oxide used as a superior multi-functional electrocatalyst for hydrogen evolution, oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 2017, 5, 5865–5872.

28

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-Air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

29

He, W. H.; Wang, Y.; Jiang, C. H.; Lu, L. H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts. Chem. Soc. Rev. 2016, 45, 2396–2409.

30

Alameda, L. T.; Lord, R. W.; Barr, J. A.; Moradifar, P.; Metzger, Z. P.; Steimle, B. C.; Holder, C. F.; Alem, N.; Sinnott, S. B.; Schaak, R. E. Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures. J. Am. Chem. Soc. 2019, 141, 10852–10861.

31

Pang, S. Y.; Wong, Y. T.; Yuan, S. G.; Liu, Y.; Tsang, M. K.; Yang, Z. B.; Huang, H. T.; Wong, W. T.; Hao, J. H. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616.

32

Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

33

Xiong, P.; Sun, B.; Sakai, N.; Ma, R. Z.; Sasaki, T.; Wang, S. J.; Zhang, J. Q.; Wang, G. X. 2D superlattices for efficient energy storage and conversion. Adv. Mater. 2020, 32, 1902654.

34

Du, C. F.; Sun, X. L.; Yu, H.; Liang, Q. H.; Dinh, K. N.; Zheng, Y.; Luo, Y. B.; Wang, Z. G.; Yan, Q. Y. Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based MXene. Adv Sci. 2019, 6, 1900116.

35

Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880.

36

Zhu, X. D.; Xie, Y.; Liu, Y. T. Exploring the synergy of 2D MXene- supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 21255–21260.

37

He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2020, 272, 119006.

38

Zhao, L.; Dong, B. L.; Li, S. Z.; Zhou, L. J.; Lai, L. F.; Wang, Z. W.; Zhao, S. L.; Han, M.; Gao, K.; Lu, M. et al. Interdiffusion reaction- assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx Nanosheets for electrocatalytic oxygen evolution. ACS Nano 2017, 11, 5800–5807.

39

Attanayake, N. H.; Abeyweera, S. C.; Thenuwara, A. C.; Anasori, B.; Gogotsi, Y.; Sun, Y. G.; Strongin, D. R. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst. J. Mater. Chem. A 2018, 6, 16882–16889.

40

Eames, C.; Islam, M. S. Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials. J. Am. Chem. Soc. 2014, 136, 16270–16276.

41

Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

42

Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/ MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

43

Tang, R.; Zhou, S.; Li, C.; Chen, R.; Zhang, L.; Zhang, Z.; Yin, L. Janus-structured Co-Ti3C2 MXene Quantum dots as a schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 2020, 30, 20200637.

44

Xiu, L. Y.; Wang, Z. Y.; Yu, M. Z.; Wu, X. W.; Qiu, J. S. Aggregation- resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028.

45

Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

46

Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

47

Selvam, N. C. S.; Lee, J.; Choi, G. H.; Oh, M. J.; Xu, S. Y.; Lim, B.; Yoo, P. J. MXene supported CoxAy (A = OH, P, Se) electrocatalysts for overall water splitting: Unveiling the role of anions in intrinsic activity and stability. J. Mater. Chem. A 2019, 7, 27383–27393.

48

Yoon, Y.; Tiwari, A. P.; Lee, M.; Choi, M.; Song, W.; Im, J.; Zyung, T.; Jung, H. K.; Lee, S. S.; Jeon, S. et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A 2018, 6, 20869–20877.

49

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

50

Benchakar, M.; Bilyk, T.; Garnero, C.; Loupias, L.; Morais, C.; Pacaud, J.; Canaff, C.; Chartier, P.; Morisset, S.; Guignard, N. et al. MXene supported cobalt layered double hydroxide nanocrystals: Facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst. Adv. Mater. Interfaces 2019, 6, 1901328.

51

Huang, H. S.; Song, Y.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl. Catal. B Environ. 2019, 251, 154–161.

52

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

53

Anasori, B.; Lukatskaya M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

54

Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

55

Zhang, C. F.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.

56

Tarnev, T.; Aiyappa, H. B.; Botz, A.; Erichsen, T.; Ernst, A.; Andronescu, C.; Schuhmann, W. Scanning electrochemical cell microscopy investigation of single ZIF-derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 14265–14269.

57

Xu, J. Y.; Li, J. J.; Xiong, D. H.; Zhang, B. S.; Liu, Y. F.; Wu, K. H.; Amorim, I.; Li, W.; Liu, L. F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476.

58

Xu, K.; Cheng, H.; Liu, L. Q.; Lv, H. F.; Wu, X. J.; Wu, C. Z.; Xie, Y. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett. 2017, 17, 578–583.

59

Kuznetsov, D. A.; Chen, Z. X.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816.

60

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

61

Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 2019, 31, 1904548.

62

Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J. et al. Coordination geometry and oxidation state requirements of corner- sharing MnO6 octahedra for water oxidation catalysis: An investigation of manganite (γ-MnOOH). ACS Catal. 2016, 6, 2089–2099.

Nano Research
Pages 238-247
Cite this article:
Guo D, Li X, Jiao Y, et al. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Research, 2022, 15(1): 238-247. https://doi.org/10.1007/s12274-021-3465-1
Topics:

1045

Views

86

Crossref

85

Web of Science

81

Scopus

5

CSCD

Altmetrics

Received: 07 January 2021
Revised: 07 March 2021
Accepted: 23 March 2021
Published: 04 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return