AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles

Huayi Shi1,§Bin Song1,§Runzhi Chen1Qiang Zhang2Guyue Hu1Jing Li1Jinhua Wang1Xinyu Meng1Houyu Wang1( )Yao He1( )
Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow UniversitySuzhou 215123 China
Department of Instrument Science and Engineering Shanghai Jiao Tong UniversityShanghai 200240 China

§ Huayi Shi and Bin Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The production of bimetallic nanoparticles with ultrasmall sizes is the constant pursuit in chemistry and materials science because of their promising applications in catalysis, electronics and sensing. Here we report ambient-temperature preparation of bimetallic NPs with tunable size and composition using microfluidic-controlled co-reduction of two metal precursors on silicon surface. Instead of free diffusion of metal ions in bulk system, microfluidic flow could well control the local ions concentration, thus leading to homogenous and controllable reduction rate among different nucleation sites. By controlling precursor concentration, flow rate and reaction time, we rationally design a series of bimetallic NPs including Ag-Cu, Ag-Pd, Cu-Pt, Cu-Pd and Pt-Pd NPs with ultrasmall sizes (~ 3.0 nm), tight size distributions (relative standard deviation (RSD) < 21%), clean surface, and homogenous elemental compositions among particles (standard deviation (SD) of weight ratios < 3.5%). This approach provides a facile, green and scalable method toward the synthesis of diverse bimetallic NPs with excellent activity.

Electronic Supplementary Material

Download File(s)
12274_2021_3466_MOESM1_ESM.pdf (15 MB)

References

1

Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735–2740.

2

Gao, D. W.; Li, S.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res. 2018, 11, 2612–2624.

3

Song, Y. D.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single- crystalline MgO. Science 2020, 367, 777–781.

4

Zhang, R. P.; Zhao, S. T.; Ding, J.; Chong, Y.; Jia, T.; Ophus, C.; Asta, M.; Ritchie, R. O.; Minor, A. M. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 2020, 581, 283–287.

5

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. , Int. Ed. 2020, 59, 19450–19459.

6

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

7

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

8

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

9

Alexeev, O. S.; Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 2003, 42, 1571–1587.

10

Candy, J. P.; Didillon, B.; Smith, E. L.; Shay, T. B.; Basset, J M. Surface organometallic chemistry on metals: A novel and effective route to custom-designed bimetallic catalysts. J. Mol. Catal. 1994, 86, 179–204.

11

Lu, J.; Low, K. B.; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P. C.; Elam, J. W. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 2014, 5, 3264.

12

Bresin, M.; Chamberlain, A.; Donev, E. U.; Samantaray, C. B.; Schardien, G. S.; Hastings, J. T. Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew. Chem. , Int. Ed. 2013, 52, 8004–8007.

13

Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427–1430.

14

Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560–564.

15

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

16

Yang, C. P.; Ko, B. H.; Hwang, S.; Liu, Z. Y.; Yao, Y. G.; Luc, W.; Cui, M. J.; Malkani, A. S.; Li, T. Y.; Wang, X. Z. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 2020, 6, eaaz6844.

17

Offner-Marko, L.; Bordet, A.; Moos, G.; Tricard, S.; Rengshausen, S.; Chaudret, B.; Luska, K. L.; Leitner, W. Bimetallic nanoparticles in supported ionic liquid phases as multifunctional catalysts for the selective hydrodeoxygenation of aromatic substrates. Angew. Chem. , Int. Ed. 2018, 57, 12721–12726.

18

Yan, J. J.; Malakooti, M. H.; Lu, Z.; Wang, Z. Y.; Kazem, N.; Pan, C. F.; Bockstaller, M. R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019, 14, 684–690.

19

Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

20

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

21

Okhlopkova, L. B.; Matus, E. V.; Ismagilov, I. Z.; Kerzhentsev, M. A.; Ismagilov, Z. R. Synthesis of nanosized thin-film bimetallic catalysts based on mesoporous TiO2 for microstructured reactors. Kinet. Catal. 2013, 54, 511–519.

22

Sui, J. S.; Yan, J. Y.; Wang, K.; Luo, G. S. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res. 2020, 13, 2837–2846.

23

Wu, S. T.; Xin, Z.; Zhao, S. C.; Sun, S. T. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Res. 2019, 12, 2736–2742.

24

Lu, M. Q.; Yang, S. K.; Ho, Y. P.; Grigsby, C. L.; Leong, K. W.; Huang, T. J. Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing. ACS Nano 2014, 8, 10026–10034.

25

Zhang, L.; Niu, G. D.; Lu, N.; Wang, J. G.; Tong, L. M.; Wang, L. D.; Kim, M. J.; Xia, Y. N. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Lett. 2014, 14, 6626–6631.

26

Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915.

27

deMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402.

28

Marre, S.; Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev. 2010, 39, 1183–1202.

29

Liu, Y.; Jiang, X. Y. Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 2017, 17, 3960–3978.

30

Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science 1999, 285, 83–85.

31

Lee, C. Y.; Chang, C. L.; Wang, Y. N.; Fu, L. M. Microfluidic mixing: A review. Int. J. Mol. Sci. 2011, 12, 3263–3287.

32

Li, M.; Ma, Q.; Zi, W.; Liu, X. J.; Zhu, X. J.; Liu, S. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 2015, 1, e1400268.

33

Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

34

Wang, H. Y.; Zhou, Y. F.; Jiang, X. X.; Sun, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem. , Int. Ed. 2015, 54, 5132–5136.

35

Yamada, Y. M. A.; Yuyama, Y.; Sato, T.; Fujikawa, S.; Uozumi, Y. A palladium-nanoparticle and silicon-nanowire-array hybrid: A platform for catalytic heterogeneous reactions. Angew. Chem. , Int. Ed. 2014, 53, 127–131.

36

Liu, X.; Astruc, D. From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications in catalysis, sensing, and materials science. Adv. Mater. 2017, 29, 1605305.

37

Tsai, T. H.; Yang, H.; Chein, R.; Yeh, M. S. Two-dimensional simulations of ion concentration distribution in microstructural electroforming. Int. J. Adv. Manuf. Tech. 2011, 57, 639–646.

38

Oskam, G.; Long, J. G.; Natarajan, A.; Searson, P. C. Electrochemical deposition of metals onto silicon. J. Phys. D Appl. Phys. 1998, 31, 1927–1949.

39

Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

40

Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

41

Kim, T.; Fu, X.; Warther, D.; Sailor, M. J. Size-controlled Pd nanoparticle catalysts prepared by galvanic displacement into a porous Si-Iron oxide nanoparticle host. ACS Nano 2017, 11, 2773–2784.

42

Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem. , Int. Ed. 2018, 57, 9475–9479.

43

Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

44

Wang, C. Y.; Chen, H. Y.; Sun, L. Y.; Chen, W. L.; Chang, Y. M.; Ahn, H.; Li, X. Q.; Gwo, S. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nat. Commun. 2015, 6, 7734.

45

Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968.

46

Soled, S. Silica-supported catalysts get a new breath of life. Science 2015, 350, 1171–1172.

47

Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. N.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

48

Laval, P.; Salmon, J. B.; Joanicot, M. A microfluidic device for investigating crystal nucleation kinetics. J. Cryst. Growth 2007, 303, 622–628.

49

Sultana, M.; Jensen, K. F. Microfluidic continuous seeded crystallization: Extraction of growth kinetics and impact of impurity on morphology. Cryst. Growth Des. 2012, 12, 6260–6266.

Nano Research
Pages 248-254
Cite this article:
Shi H, Song B, Chen R, et al. Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles. Nano Research, 2022, 15(1): 248-254. https://doi.org/10.1007/s12274-021-3466-0
Topics:

801

Views

8

Crossref

7

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 21 January 2021
Revised: 11 March 2021
Accepted: 23 March 2021
Published: 20 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return