AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Protein nanocapsules based vectors for efficient gene transfection

Xuan Hu1,2Song Wang1Junjie Xu2Yilong Yang2Zhang Zhang2Xiaolin Wang2Xiaopeng Zhang2( )Wei Chen2( )
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory National University of Defense TechnologyChangsha 410073 China
Laboratory of Vaccine and Antibody Engineering Beijing Institute of BiotechnologyBeijing 100071 China
Show Author Information

Graphical Abstract

Abstract

Gene therapy employs exogenous nucleic acids to treat genetic diseases and disorders. The insufficient cytosolic delivery of genetic materials remains a major hurdle for effective gene therapy. To address this challenge, we have designed and synthesized various cationic protein nanocapsules that can efficiently condense nucleic acids via self-assembly. Through systematically investigating the gene transfection efficiency of these nanocapsules as delivery vectors, we find that nanocapsules, which were synthesized with hydrolyzable polymers containing tertiary amine groups, afford the highest transfection efficiency (~ 80%), resulting in stable protein expression for over four days. The mechanistic study reveals that tertiary amine groups facilitate the endosomal escape of the nucleic acid-nanocapsule complexes after their cell internalization via endocytosis. The subsequent hydrolysis of the polymers triggers the cytosolic release of the nucleic acids, thereby prompting gene expression. Our results not only provide a new class of gene delivery vectors but also detail the parameters for future vector design.

Electronic Supplementary Material

Download File(s)
12274_2021_3469_MOESM1_ESM.pdf (1.7 MB)

References

1

Elouahabi, A.; Ruysschaert, J. M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 2005, 11, 336– 347.

2

Kang, Z. Y.; Meng, Q. B.; Liu, K. L. Peptide-based gene delivery vectors. J. Mater. Chem. B 2019, 7, 1824–1841.

3

Holladay, C.; Keeney, M.; Greiser, U.; Murphy, M.; O'Brien, T.; Pandit, A. A matrix reservoir for improved control of non-viral gene delivery. J. Controlled Release 2009, 136, 220–225.

4

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555.

5

Wang, Y. Y.; Ye, M. Z.; Xie, R. S.; Gong, S. Q. Enhancing the in vitro and in vivo stabilities of polymeric nucleic acid delivery nanosystems. Bioconjugate Chem. 2019, 30, 325–337.

6

Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker, J. R. Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technol. Today 2000, 3, 232–245.

7

Scholz, C.; Wagner, E. Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. J. Controlled Release 2012, 161, 554–565.

8

Yan, M.; Wen, J.; Liang, M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Modulation of gene expression by polymer nanocapsule delivery of DNA cassettes encoding small RNAs. PLoS One 2015, 10, e0127986.

9

Kim, J.; Lee, Y. M.; Kim, H.; Park, D.; Kim, J.; Kim, W. J. Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy. Biomaterials 2016, 75, 102–111.

10

Yoshinaga, N.; Ishii, T.; Naito, M.; Endo, T.; Uchida, S.; Cabral, H.; Osada, K.; Kataoka, K. Polyplex micelles with phenylboronate/ gluconamide cross-linking in the core exerting promoted gene transfection through spatiotemporal responsivity to intracellular pH and ATP concentration. J. Am. Chem. Soc. 2017, 139, 18567–18575.

11

Mariño-Ramírez, L.; Kann, M. G.; Shoemaker, B. A.; Landsman, D. Histone structure and nucleosome stability. Expert Rev. Proteomics 2005, 2, 719–729.

12

Iwasaki, W.; Miya, Y.; Horikoshi, N.; Osakabe, A.; Taguchi, H.; Tachiwana, H.; Shibata, T.; Kagawa, W.; Kurumizaka, H. Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 2013, 3, 363–369.

13

Xu, D.; Han, H.; He, Y. X.; Lee, H.; Wu, D.; Liu, F.; Liu, X. S.; Liu, Y.; Lu, Y. F.; Ji, C. A hepatocyte-mimicking antidote for alcohol intoxication. Adv. Mater. 2018, 30, 1707443.

14

Wu, D.; Qin, M.; Xu, D.; Wang, L.; Liu, C. Y.; Ren, J.; Zhou, G.; Chen, C.; Yang, F. M.; Li, Y. Y. et al. A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv. Mater. 2019, 31, 1807557.

15

Jia, X. Q.; Wang, L. Y.; Du, J. J. In situ polymerization on biomacromolecules for nanomedicines. Nano Res. 2018, 11, 5028–5048.

16

Liu, Y.; Li, J.; Lu, Y. F. Enzyme therapeutics for systemic detoxification. Adv. Drug Deliv. Rev. 2015, 90, 24–39.

17

Xu, D.; Wu, D.; Qin, M.; Nih, L. R.; Liu, C. Y.; Cao, Z.; Ren, J.; Chen, X. J.; He, Z. L.; Yu, W. H. et al. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration. Adv. Mater. 2019, 31, 1900727.

18

Zheng, C. X.; Wang, Q. X.; Wang, Y.; Zhao, X. Z.; Gao, K. M.; Liu, Q.; Zhao, Y.; Zhang, Z. Z.; Zheng, Y. D.; Cao, J. J. et al. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv. Mater. 2019, 31, 1902542.

19

Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.

20

Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

21

Biswas, A.; Joo, K. I.; Liu, J.; Zhao, M. X.; Fan, G. P.; Wang, P.; Gu, Z.; Tang, Y. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 2011, 5, 1385–1394.

22

Biswas, A.; Liu, Y.; Liu, T. F.; Fan, G. P.; Tang, Y. Polyethylene glycol-based protein nanocapsules for functional delivery of a differentiation transcription factor. Biomaterials 2012, 33, 5459– 5467.

23

Hu, X. B.; Tong, Z.; Lyon, L. A. Synthesis and physicochemical properties of cationic microgels based on poly(N-isopropylmethacrylamide). Colloid Polym. Sci. 2011, 289, 333–339.

24

Laurence, J. S.; Nelson, B. N.; Ye, Q.; Park, J.; Spencer, P. Characterization of acid-neutralizing basic monomers in co-solvent systems by NMR. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 361–367.

25

Dai, F. Y.; Liu, W. G. Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Biomaterials 2011, 32, 628–638.

26

Ukawa, M.; Akita, H.; Masuda, T.; Hayashi, Y.; Konno, T.; Ishihara, K.; Harashima, H. 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes. Biomaterials 2010, 31, 6355–6362.

27

Goda, T.; Goto, Y.; Ishihara, K. Cell-penetrating macromolecules: Direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials 2010, 31, 2380– 2387.

28

Wen, J.; Wu, D.; Qin, M.; Liu, C. Y.; Wang, L.; Xu, D.; Vinters, H. V.; Liu, Y.; Kranz, E.; Guan, X. et al. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat. Biomed. Eng. 2019, 3, 706–716.

29

Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

30

Lim, Y. B.; Kim, S. M.; Lee, Y.; Lee, W. K.; Yang, T. G.; Lee, M. J.; Suh, H.; Park, J. S. Cationic hyperbranched poly(amino ester): A novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc. 2001, 123, 2460–2461.

31

Sonawane, N. D.; Szoka, F. C. Jr.; Verkman, A. S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 2003, 278, 44826–44831.

32

Sun, Z. B.; Zhou, D. Z. PLL/PAE/DNA ternary complexes with enhanced endosomal escape ability for efficient and safe gene transfection. New J. Chem. 2016, 40, 9806–9812.

33

Akinc, A.; Langer, R. Measuring the pH environment of DNA delivered using nonviral vectors: Implications for lysosomal trafficking. Biotechnol. Bioeng. 2002, 78, 503–508.

Nano Research
Pages 264-271
Cite this article:
Hu X, Wang S, Xu J, et al. Protein nanocapsules based vectors for efficient gene transfection. Nano Research, 2022, 15(1): 264-271. https://doi.org/10.1007/s12274-021-3469-x
Topics:

793

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 11 March 2021
Revised: 18 March 2021
Accepted: 24 March 2021
Published: 10 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return