AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications

Teerayut Prada1Viyada Harnchana1,2( )Anthika Lakhonchai3Artit Chingsungnoen3( )Phitsanu Poolcharuansin3Narong Chanlek4Annop Klamchuen5Prasit Thongbai1,2Vittaya Amornkitbamrung1,2
Department of Physics Khon Kaen UniversityKhon Kaen 40002 Thailand
Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy Khon Kaen UniversityKhon Kaen 40002 Thailand
Technological Plasma Research Unit, Department of Physics, Faculty of Science Mahasarakham UniversityMaha Sarakham 44150 Thailand
Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
National Nanotechnology Center (NANOTEC) NSTDAPathum Thani 12120 Thailand
Show Author Information

Graphical Abstract

Abstract

In this work, the surface modification using a two-steps plasma etching has been developed for enhancing energy conversion performance in polytetrafluoroethylene (PTFE) triboelectric nanogenerator (TENG). Enhancing surface area by a powerful O2 and Ar bipolar pulse plasma etching without the use of CF4 gas has been demonstrated for the first time. TENG with modified surface PTFE using a sequential two-step O2/Ar plasma has a superior power density of 9.9 W⋅m−2, which is almost thirty times higher than that of a pristine PTFE TENG. The synergistic combination of high surface area and charge trapping sites due to chemical bond defects achieved from the use of a sequential O2/Ar plasma gives rise to the intensified triboelectric charge density and the enhancement of power output of PTFE-based TENG. The effects of plasma species and plasma etching sequence on surface morphologies and surface chemical species were investigated by a field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The correlation of surface morphology, chemical structure, and TENG performance was elucidated. In addition, the applications of mechanical energy harvesting for lighting, charging capacitors, keyboard sensing and operating a portable calculator were demonstrated.

Electronic Supplementary Material

Video
12274_2021_3470_MOESM1_ESM.mp4
12274_2021_3470_MOESM2_ESM.mp4
12274_2021_3470_MOESM3_ESM.mp4
12274_2021_3470_MOESM4_ESM.mp4
12274_2021_3470_MOESM5_ESM.mp4
Download File(s)
12274_2021_3470_MOESM6_ESM.pdf (3 MB)

References

1

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

2

Lee, J. W.; Hwang, W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy 2018, 52, 315–322.

3

Wu, J.; Wang, X. L.; Li, H. Q.; Wang, F.; Yang, W. X.; Hu, Y. Q. Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 2018, 48, 607–616.

4

Wang, L. Y.; Daoud, W. A. Highly flexible and transparent polyionic- skin triboelectric nanogenerator for biomechanical motion harvesting. Adv. Energy Mater. 2019, 9, 1803183.

5

Ryu, H.; Lee, J. H.; Kim, T. Y.; Khan, U.; Lee, J. H.; Kwak, S. S.; Yoon, H. J.; Kim, S. W. High-performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions. Adv. Energy Mater. 2017, 7, 1700289.

6

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

7

Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.

8

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect- enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

9

Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

10

Kim, D.; Park, S. J.; Jeon, S. B.; Seol, M. L.; Choi, Y. K. A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2016, 2, 1500331.

11

Park, H. Y.; Kim, H. K.; Hwang, Y. H.; Shin, D. M. Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow. J. Korean Phys. Soc. 2018, 72, 499–503.

12

Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

13

Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. et al. Triboelectric– electromagnetic hybrid generator for harvesting blue energy. Nano- Micro Lett. 2018, 10, 54.

14

Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843– 3850.

15

Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

16

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge- separation mechanism. Nano Lett. 2013, 13, 2226–2233.

17

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

18

Zhang, H. L.; Yang, Y.; Zhong, X. D.; Su, Y. J.; Zhou, Y. S.; Hu, C. G.; Wang, Z. L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 2014, 8, 680–689.

19

Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X. J.; Wang, Z. L. Self- powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 2015, 9, 8376–8383.

20

Yu, A. F.; Song, M.; Zhang, Y.; Zhang, Y.; Chen, L. B.; Zhai, J. Y.; Wang, Z. L. Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res. 2015, 8, 765–773.

21

Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

22

Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

23

Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

24

Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

25

Wen, Z.; Chen, J.; Yeh, M. H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.

26

Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric- nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.

27

Bai, Y.; Han, C. B.; He, C.; Gu, G. Q.; Nie, J. H.; Shao, J. J.; Xiao, T. X.; Deng, C. R.; Wang, Z. L. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater. 2018, 28, 1706680.

28

Morber, J. R.; Wang, X. D.; Liu, J.; Snyder, R. L.; Wang, Z. L. Wafer-level patterned and aligned polymer nanowire/micro- and nanotube arrays on any substrate. Adv. Mater. 2009, 21, 2072–2076.

29

Liu, L.; Tang, W.; Wang, Z. L. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology 2017, 28, 035405.

30

Fang, H.; Wu, W. Z.; Song, J. H.; Wang, Z. L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 2009, 113, 16571–16574.

31

Cheng, X. L.; Meng, B.; Chen, X. X.; Han, M. D.; Chen, H. T.; Su, Z. M.; Shi, M. Y.; Zhang, H. X. Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 2016, 12, 229–236.

32

Kim, D.; Jeon, S. B.; Kim, J. Y.; Seol, M. L.; Kim, S. O.; Choi, Y. K. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 2015, 12, 331–338.

33

Yoo, H. G.; Byun, M.; Jeong, C. K.; Lee, K. J. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Adv. Mater. 2015, 27, 3982–3998.

34

Ke, K. H.; Chung, C. K. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209.

35

Trinh, V. L.; Chung, C. K. A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 2017, 13, 1700373.

36

Lin, Z. H.; Xie, Y. N.; Yang, Y.; Wang, S. H.; Zhu, G.; Wang, Z. L. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 2013, 7, 4554–4560.

37

Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.

38

Feng, Y. G.; Zheng, Y. B.; Ma, S. H.; Wang, D. A.; Zhou, F.; Liu, W. M. High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy 2016, 19, 48–57.

39

Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

40

Kim, D. Y.; Kim, H. S.; Jung, J. H. Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator. J. Korean Phys. Soc. 2016, 69, 1720–1723.

41

Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

42

Yang, X. Y.; Chan, S.; Wang, L. Y.; Daoud, W. A. Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy 2018, 44, 388–398.

43

Li, H. Y.; Su, L.; Kuang, S. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 2015, 25, 5691–5697.

44

Kim, D.; Oh, Y.; Hwang, B. W.; Jeon, S. B.; Park, S. J.; Choi, Y. K. Triboelectric nanogenerator based on the internal motion of powder with a package structure design. ACS Nano 2016, 10, 1017–1024.

45

Lee, C.; Yang, S.; Choi, D.; Kim, W.; Kim, J.; Hong, J. Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators. Nano Energy 2019, 57, 353–362.

46

Youngblood, J. P.; McCarthy, T. J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 1999, 32, 6800–6806.

47

Salapare III, H. S.; Guittard, F.; Noblin, X.; Taffin de Givenchy, E.; Celestini, F.; Ramos, H. J. Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. J. Colloid Interface Sci. 2013, 396, 287–292.

48

Vandencasteele, N.; Broze, B.; Collette, S.; De Vos, C.; Viville, P.; Lazzaroni, R.; Reniers, F. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis. Langmuir 2010, 26, 16503–16509.

49

Morra, M.; Occhiello, E.; Garbassi, F. Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 1989, 5, 872–876.

50

Liu, C. Z.; Wu, J. Q.; Ren, L. Q.; Tong, J.; Li, J. Q.; Cui, N.; Brown, N. M. D.; Meenan, B. J. Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater. Chem. Phys. 2004, 85, 340–346.

51

Wang, C.; Chen, J. R.; Li, R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Sci. 2008, 254, 2882–2888.

52

Carbone, E. A. D.; Verhoeven, M. W. G. M.; Keuning, W.; van der Mullen, J. J. A. M. PTFE treatment by remote atmospheric Ar/O2 plasmas: A simple reaction scheme model proposal. J. Phys. : Conf. Ser. 2016, 715, 012011.

53

Kolská, Z.; Řezníčková, A.; Hnatowicz, V.; Švorčík, V. PTFE surface modification by Ar plasma and its characterization. Vacuum 2012, 86, 643–647.

54

Stoffels, E.; Stoffels, W. W.; Vender, D.; Kando, M.; Kroesen, G. M. W.; de Hoog, F. J. Negative ions in a radio-frequency oxygen plasma. Phys. Rev. E 1995, 51, 2425–2435.

55

Berezhnoj, S. V.; Shin, C. B.; Buddemeier, U.; Kaganovich, I. Charged species profiles in oxygen plasma. Appl. Phys. Lett. 2000, 77, 800–802.

56

Carbone, E. A. D.; Boucher, N.; Sferrazza, M.; Reniers, F. How to increase the hydrophobicity of PTFE surfaces using an r. f. Atmospheric-pressure plasma torch. Surf. Interface Anal. 2010, 42, 1014–1018.

57

Wilson, D. J.; Williams, R. L.; Pond, R. C. Plasma modification of PTFE surfaces. Part Ⅰ: Surfaces immediately following plasma treatment. Surf. Interface Anal. 2001, 31, 385–396.

58

Vesel, A.; Mozetic, M.; Zalar, A. XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma. Surf. Interface Anal. 2008, 40, 661–663.

59

Ryan, M. E.; Badyal, J. P. S. Surface texturing of PTFE film using nonequilibrium plasmas. Macromolecules 1995, 28, 1377–1382.

60

Egitto, F. D.; Matienzo, L. J.; Schreyer, H. B. Reactive ion etching of poly(tetrafluoroethylene) in O2–CF4 plasmas. J. Vac. Sci. Technol. A 1992, 10, 3060–3064.

61

Momose, Y.; Tamura, Y.; Ogino, M.; Okazaki, S.; Hirayama, M. Chemical reactivity between Teflon surfaces subjected to argon plasma treatment and atmospheric oxygen. J. Vac. Sci. Technol. A 1992, 10, 229–238.

62

Shao, X. J.; Zhang, G. J.; Zhan, J. Y.; Xu, G. M. Research on surface modification of polytetrafluoroethylene coupled with argon dielectric barrier discharge plasma jet characteristics. IEEE Trans. Plasma Sci. 2011, 39, 3095–3102.

63

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

64

He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xi, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.

65

Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

66

Kao, K. C. Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes; Elsevier: Amsterdam, 2004; pp 41–114.

Nano Research
Pages 272-279
Cite this article:
Prada T, Harnchana V, Lakhonchai A, et al. Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Research, 2022, 15(1): 272-279. https://doi.org/10.1007/s12274-021-3470-4
Topics:

940

Views

66

Crossref

60

Web of Science

58

Scopus

0

CSCD

Altmetrics

Received: 19 December 2020
Revised: 24 March 2021
Accepted: 25 March 2021
Published: 12 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return