AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction

Zhongyin Zhao1,2Qi Shao1Jiangyan Xue1Bolong Huang3 ( )Zheng Niu1( )Hongwei Gu1Xiaoqing Huang1( )Jianping Lang1,2( )
College of Chemistry, Chemical Engineering and Materials Science Soochow UniversitySuzhou 215123 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of SciencesShanghai 200032 China
Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic UniversityHung Hom, Kowloon, Hong Kong SAR China
Show Author Information

Graphical Abstract

Abstract

Modifying electrocatalysts nanostructures and tuning their electronic properties through defects-oriented synthetic strategies are essential to improve the oxygen evolution reaction (OER) performance of electrocatalysts. Current synthetic strategies about electrocatalysts mainly target the single or double structural defects, while the researches about the synergistic effect of multiple structural defects are rare. In this work, the ultrathin NiFe layered double hydroxide nanosheets with a holey structure, oxygen vacancies and Ni3+ defects on nickel foam (NiFe-LDH-NSs/NF) are prepared by employing a simple and green H2O2-assisted etching method. The synergistic effect of the above three defects leads to the exposure of more active sites and significant improvement of the intrinsic activity. The optimized catalyst exhibits an excellent OER performance with an extraordinarily low overpotential of 170 mV at 10 mA·cm−2 and a small Tafel slope of 39.3 mV·dec−1 in 1 M KOH solution. Density functional theory calculations reveal this OER performance arises from pseudo re-oxidized metal-stable Ni3+ near oxygen vacancies (Ovac), which suppresses 3d-eg of Ni-site and elevates d-band center towards the competitively low electron-transfer barrier. This work provides a new insight to fabricate advanced electrocatalysts for renewable energy conversion technologies.

Electronic Supplementary Material

Download File(s)
12274_2021_3475_MOESM1_ESM.pdf (7 MB)

References

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen- evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 21, 1072–1075.

3

Sahasrabudhe, A.; Dixit, H.; Majee, R.; Bhattacharyya, S. Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nat. Commun. 2018, 9, 2014.

4

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

5

Ju, S. K.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.

6

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

7

Fang, Y.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 2018, 9, 2551.

8

Concina, I.; Ibupoto, Z. H.; Vomiero, A. Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy Mater. 2017, 7, 1700706.

9

Jin, H. Y.; Guo, C. X.; Lin, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

10

Weng, B. C.; Xu, F. H.; Wang, C. L.; Meng, W. W.; Grice, C. R.; Yan, Y. F. A layered Na1–xNiyFe1–yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 2017, 10, 121–128.

11

Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

12

Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.

13

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

14

Liu, K. L.; Wang, F. M.; He, P.; Shifa, T. A.; Wang, Z. X.; Cheng, Z. Z.; Zhan, X. Y.; He, J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv. Energy Mater. 2018, 8, 1703290.

15

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

16

Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.

17

Cao, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Li, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem. , Int. Ed. 2018, 57, 9392–9396.

18

Song, F.; Xie, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

19

Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.

20

Qin, M. L.; Li, S. M.; Zhao, Y. Z.; Lao, C. Y.; Zhang, Z. L.; Liu, L.; Fang, F.; Wu, H. Y.; Jia, B. R.; Liu, Z. W. et al. Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution. Adv. Energy Mater. 2019, 9, 1803060.

21

Xie, J. F.; Zhang, X. D.; Zhang, H.; Zhang, J. J.; Li, S.; Wang, R. X.; Pan, B. C.; Xie, Y. Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017, 29, 1604765.

22

Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

23

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2016, 128, 5363–5367.

24

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

25

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 5867–5871.

26

Wan, K.; Luo, J. S.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X. H.; Mao, B. W.; Zhang, X.; Fransaer, J. Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1900315.

27

Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

28

Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.

29

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

30

Cai, Q.; Hong, W. T.; Jian, C. Y.; Liu, W. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation. Nanoscale 2020, 12, 7550–7556.

31

Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

32

Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni: FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.

33

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhao, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

34

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

35

Stoyanova, R.; Zhecheva, E.; Alcántara, R.; Tirado, J. L. Local coordination of low-spin Ni3+ probes in trigonal LiAlyCo1–yO2 monitored by HF-EPR. J. Phys. Chem. B 2004, 108, 4053–4057.

36

Zhang, J. B.; Yin, R. G.; Shao. Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem. , Int. Ed. 2019, 58, 5609–5613.

37

Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341.

38

Tang, C.; Chen, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. , Int. Ed. 2015, 127, 9483–9487.

39

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Zeitschrift. Fur. Kristallographie. 2005, 220, 567-570.

40

Marzari, N.; Vanderbilt, D.; Payne, M. C. Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys. Rev. Lett. 1997, 79, 1337.

41

Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: an ab initio study of the neutral silicon vacancy. Phys. Rev. B 2003, 67, 075204.

42

Kleinman, L.; Bylander, D. M. Efficacious form for model pseudopotentials. Phys. Rev. Lett. 1982, 48, 1425.

43

Louie, S. G.; Froyen, S.; Cohen, M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 1982, 26, 1738.

44

Grinberg, I.; Ramer, N. J.; Rappe, A. M. Transferable relativistic dirac-slater pseudopotentials. Phys. Rev. Lett. 2000, 62, 2311.

45

Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 1990, 41, 1227.

46

Zhang, H. J.; Li, X. P.; Hahnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

47

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.

48

Qiao, X. S.; Kang, H. J.; Li, Y.; Cui, K.; Jia, X.; Liu, H. H.; Qin, W.; Pupucevski, M.; Wu, G. Porous Fe-doped β-Ni(OH)2 nanopyramid array electrodes for water splitting. ACS Appl. Mater. Interfaces 2020, 12, 36208-36219.

49

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Tang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

50

Lin, Y. P.; Wang. H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.

51

Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. Y.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.

52

Dinh, K. N.; Zheng, P. L.; Dai, Z. F.; Zhang, Y.; Dangol, R.; Zheng, Y.; Li, B.; Zong, Y.; Yan, Q. Y. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1703257.

53

He, J.; Zhou, X.; Xu, P.; Sun, J. M. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy 2021, 80, 105540.

54

Li, S. L.; Li, Z. C.; Ma, R. G.; Gao, C. L.; Liu, L. L.; Hu, L. P.; Zhu, J. L.; Sun, T. M.; Tang, Y. F.; Liu, D. M. et al. A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 3773-3780.

55

Guo, D. Y.; Wan, Z. X.; Li. Y.; Xi. B.; Wang, C. X. TiN@Co5.47N composite material constructed by atomic layer deposition as reliable electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2008511.

56

Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. G. et al. A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

57

Zhang, W. D.; Hu, Q. T.; Wang, L. L.; Gao, J.; Zhu, H. Y.; Yan, X. D.; Gu, Z. G. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 286, 119906.

58

Zai, S. F.; Dong, A. Q.; Li, J.; Wen, Z.; Yang, C. C.; Jiang, Q. Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on microporous Ni foam for high-efficiency oxygen evolution electrocatalysis. J. Mater. Chem. A. 2021, 9, 6223-6231.

59

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2014, 126, 7714-7718.

60

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.

61

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

62

Liu, C. H.; Han, Y.; Yao, L. B.; Liang L. M.; He, J. Y.; Hao, Q. Y.; Zhang, J.; Li, Y.; Liu, H. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021, 17, 2007334.

63

He, L. G.; Cheng, P. Y. Cheng, C. C.; Huang, C. L.; Hsieh, C. T.; Lu, S. Y. (NixFeyCo6-x-y)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Appl. Catal. B: Environ. 2021, 290, 120049.

64

Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bark, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 2018, 130, 9536-9540.

65

Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.

66

Yu, J.; Wang, J.; Long, X.; Chen, L.; Cao, Q.; Wang, J.; Qiu, C.; Lim, J.; Yang, S. H. Formation of FeOOH nanosheets induces substitutional doping of CeO2-x with high-valence Ni for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2002731.

67

Li, Y.; Hu, L. S.; Zheng, W. R.; Peng, X.; Liu, M. J.; Chu, P. K.; Lee, L. Y. S. Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy 2018, 52, 360-368.

68

Hui, L.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Zhang, C.; Zhang, D. Y.; Jia, D. Z.; Zhao, Y. J.; Li, Y. J.; Liu, H. B. et al. Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nat. Commun. 2018, 9, 5309.

69

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

70

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Dong, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

Nano Research
Pages 310-316
Cite this article:
Zhao Z, Shao Q, Xue J, et al. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Research, 2022, 15(1): 310-316. https://doi.org/10.1007/s12274-021-3475-z
Topics:

1078

Views

98

Crossref

89

Web of Science

92

Scopus

5

CSCD

Altmetrics

Received: 04 January 2021
Revised: 24 February 2021
Accepted: 25 March 2021
Published: 03 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return