AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in electronic devices for monitoring and modulation of brain

Yong Won Kwon1,§Yoon Sun Jun1,§Young-Geun Park1,§Jiuk Jang1,§Jang-Ung Park1,2,3( )
Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea

§ Yong Won Kwon, Yoon Sun Jun, Young-Geun Park, and Jiuk Jang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The brain is actuated by billions of neurons with trillions of interconnections that regulate human behaviors. Understanding the mechanisms of these systems that induce sensory reactions and respond to disease remains one of the greatest challenges in science, engineering, and medicine. Recent advances in nanomaterials and nanotechnologies have led to the extensive research of electronic devices for brain interfaces to better understand the neural activities of the brain’s complex nervous system. The development of sensor devices for monitoring the physiological signals of the brain related to traumatic injury status has accompanied by the progress of electronic neural probes in parallel. In addition, these neurological and stereotactic surgical revolutions hold immense potential for clinical analysis of pharmacological systems within cerebral tissues. Here, we review the progress of electronic devices interfacing with brain in terms of the materials, fabrication technologies, and device designs. Neurophysiological activity can be measured and modulated by brain probes based on newly developed nanofabrication methodologies. Furthermore, in vivo pathological monitoring of the brain and pharmacological assessment has been developed in miniaturized and wireless form. We also consider the key challenges and prospects for further development, and explore the future directions emerging in the latest research.

References

[1]
Viventi, J.; Kim, D. H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. W.; Vanleer, A. C. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599-1605.
[2]
Uhlhaas, P. J.; Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 2006, 52, 155-168.
[3]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S. Y. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095-2128.
[4]
Schwarzbold, M.; Diaz, A.; Martins, E. T.; Rufino, A.; Amante, L. N.; Thais, M. E.; Quevedo, J.; Hohl, A.; Linhares, M. N.; Walz, R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr. Dis. Treat. 2008, 4, 797-816.
[5]
Roberts, I.; Sydenham, E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst. Rev. 2012, 12, CD000033.
[6]
Chesnut, R. M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J. et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N. Engl. J. Med. 2012, 367, 2471-2481.
[7]
Shin, J.; Liu, Z. H.; Bai, W. B.; Liu, Y. H.; Yan, Y.; Xue, Y. G.; Kandela, I.; Pezhouh, M.; MacEwan, M. R.; Huang, Y. G. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899.
[8]
Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. BJA Br. J. Anaesth. 2007, 99, 4-9.
[9]
Bai, W. B.; Shin, J.; Fu, R. X.; Kandela, I.; Lu, D.; Ni, X. Y.; Park, Y.; Liu, Z. H.; Hang, T.; Wu, D. et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 2019, 3, 644-654.
[10]
Shalf, J. The future of computing beyond Moore’s Law. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190061.
[11]
Wang, C. J.; Sim, K.; Chen, J.; Kim, H.; Rao, Z. L.; Li, Y. H.; Chen, W. Q.; Song, J. Z.; Verduzco, R.; Yu, C. J. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695.
[12]
Um, D. S.; Lim, S.; Lee, Y.; Lee, H.; Kim, H. J.; Yen, W. C.; Chueh, Y. L.; Ko, H. Vacuum-induced wrinkle arrays of InGaAs semiconductor nanomembranes on polydimethylsiloxane microwell arrays. ACS Nano 2014, 8, 3080-3087.
[13]
Wang, J. X.; Cai, G. F.; Li, S. H.; Gao, D. C.; Xiong, J. Q.; Lee, P. S. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv. Mater. 2018, 30, 1706157.
[14]
Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.
[15]
Yang, Q. S.; Lee, S.; Xue, Y. G.; Yan, Y.; Liu, T. L.; Kang, S. K.; Lee, Y. J.; Lee, S. H.; Seo, M. H.; Lu, D. et al. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv. Funct. Mater. 2020, 30, 1910718.
[16]
Park, J.; Ahn, D. B.; Kim, J.; Cha, E.; Bae, B. S.; Lee, S. Y.; Park, J. U. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 2019, 5, eaay0764.
[17]
Kim, J.; Cha, E.; Park, J. U. Recent advances in smart contact lenses. Adv. Mater. Technol. 2020, 5, 1900728.
[18]
Park, Y. G.; Cha, E.; An, H. S.; Lee, K. P.; Song, M. H.; Kim, H. K.; Park, J. U. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Res. 2020, 13, 1347-1353.
[19]
Ku, M.; Kim, J.; Won, J. E.; Kang, W.; Park, Y. G.; Park, J.; Lee, J. H.; Cheon, J.; Lee, H. H.; Park, J. U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891.
[20]
Im, C.; Seo, J. M. A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 2016, 6, 104-112.
[21]
Fattahi, P.; Yang, G.; Kim, G.; Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014, 26, 1846-1885.
[22]
Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330-345.
[23]
Buzsáki, G.; Anastassiou, C. A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407-420.
[24]
Tallgren, P.; Vanhatalo, S.; Kaila, K.; Voipio, J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin. Neurophysiol. 2005, 116, 799-806.
[25]
Ferree, T. C.; Luu, P.; Russell, G. S.; Tucker, D. M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 2001, 112, 536-544.
[26]
Leleux, P.; Badier, J. M.; Rivnay, J.; Bénar, C.; Hervé, T.; Chauvel, P.; Malliaras, G. G. Conducting polymer electrodes for electroencephalography. Adv. Healthc. Mater. 2014, 3, 490-493.
[27]
Lin, S.; Liu, J. C.; Li, W. Z.; Wang, D.; Huang, Y.; Jia, C.; Li, Z. W.; Murtaza, M.; Wang, H. Y.; Song, J. N. et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett. 2019, 19, 6853-6861.
[28]
Velcescu, A.; Lindley, A.; Cursio, C.; Krachunov, S.; Beach, C.; Brown, C. A.; Jones, A. K. P.; Casson, A. J. Flexible 3D-printed EEG electrodes. Sensors 2019, 19, 1650.
[29]
Tian, L. M.; Zimmerman, B.; Akhtar, A.; Yu, K. J.; Moore, M.; Wu, J.; Larsen, R. J.; Lee, J. W.; Li, J. H.; Liu, Y. H. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194-205.
[30]
Norton, J. J. S.; Lee, D. S.; Lee, J. W.; Lee, W.; Kwon, O.; Won, P.; Jung, S. Y.; Cheng, H. Y.; Jeong, J. W.; Akce, A. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, 3920-3925.
[31]
Lacour, S. P.; Benmerah, S.; Tarte, E.; FitzGerald, J.; Serra, J.; McMahon, S.; Fawcett, J.; Graudejus, O.; Yu, Z.; Morrison III, B. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 2010, 48, 945-954.
[32]
Márton, G.; Tóth, E. Z.; Wittner, L.; Fiáth, R.; Pinke, D.; Orbán, G.; Meszéna, D.; Pál, I.; Győri, E. L.; Bereczki, Z. et al. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. Mater. Sci. Eng. C 2020, 112, 110870.
[33]
Chen, H.; Yuan, L.; Song, W.; Wu, Z. K.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059-1087.
[34]
Nicolelis, M. A. L.; Dimitrov, D.; Carmena, J. M.; Crist, R.; Lehew, G.; Kralik, J. D.; Wise, S. P. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA 2003, 100, 11041-11046.
[35]
Wise, K. D.; Najafi, K. Microfabrication techniques for integrated sensors and microsystems. Science 1991, 254, 1335-1342.
[36]
Yeager, J. D.; Phillips, D. J.; Rector, D. M.; Bahr, D. F. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J. Neurosci. Methods 2008, 173, 279-285.
[37]
Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511-517.
[38]
Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310-315.
[39]
Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542-E9549.
[40]
Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.
[41]
Jang, J.; Kim, H.; Ji, S.; Kim, H. J.; Kang, M. S.; Kim, T. S.; Won, J. E.; Lee, J. H.; Cheon, J.; Kang, K. et al. Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 2020, 20, 66-74.
[42]
Jang, J.; Oh, B.; Jo, S.; Park, S.; An, H. S.; Lee, S.; Cheong, W. H.; Yoo, S.; Park, J. U. Human-interactive, active-matrix displays for visualization of tactile pressures. Adv. Mater. Technol. 2019, 4, 1900082.
[43]
Wark, H. A. C.; Sharma, R.; Mathews, K. S.; Fernandez, E.; Yoo, J.; Christensen, B.; Tresco, P.; Rieth, L.; Solzbacher, F.; Normann, R. A. et al. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 2013, 10, 045003.
[44]
Won, S. M.; Song, E. M.; Zhao, J. N.; Li, J. H.; Rivnay, J.; Rogers, J. A. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 2018, 30, 1800534.
[45]
Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydın, Ç. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232-236.
[46]
Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629-636.
[47]
Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 2016, 13, 875-882.
[48]
Yang, Q. R.; Wu, B. C.; Eles, J. R.; Vazquez, A. L.; Kozai, T. D. Y.; Cui, X. T. Zwitterionic polymer coating suppresses microglial encapsulation to neural implants in vitro and in vivo. Adv. Biosyst. 2020, 4, 1900287.
[49]
Zhang, W. G.; Zhou, X. H.; He, Y. X.; Xu, L. Y.; Xie, J. Implanting mechanics of PEG/DEX coated flexible neural probe: Impacts of fabricating methods. Biomed. Microdevices 2021, 23, 17.
[50]
Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron 2012, 73, 862-885.
[51]
Berridge, M. J.; Lipp, P.; Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11-21.
[52]
Oh, J.; Lee, C.; Kaang, B. K. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. Korean J. Physiol. Pharmacol. 2019, 23, 237-249.
[53]
Chemla, S.; Chavane, F. Voltage-sensitive dye imaging: Technique review and models. J. Physiol. Paris 2010, 104, 40-50.
[54]
Kim, C. K.; Yang, S. J.; Pichamoorthy, N.; Young, N. P.; Kauvar, I.; Jennings, J. H.; Lerner, T. N.; Berndt, A.; Lee, S. Y.; Ramakrishnan, C. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 2016, 13, 325-328.
[55]
Pozzan, T.; Arslan, P.; Tsien, R. Y.; Rink, T. J. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol. 1982, 94, 335-340.
[56]
Baker, B. J.; Kosmidis, E. K.; Vucinic, D.; Falk, C. X.; Cohen, L. B.; Djurisic, M.; Zecevic, D. Imaging brain activity with voltage- and calcium-sensitive dyes. Cell. Mol. Neurobiol. 2005, 25, 245-282.
[57]
Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73-76.
[58]
Burton, A.; Obaid, S. N.; Vázquez-Guardado, A.; Schmit, M. B.; Stuart, T.; Cai, L.; Chen, Z. Y.; Kandela, I.; Haney, C. R.; Waters, E. A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 2835-2845.
[59]
Lu, L. Y.; Gutruf, P.; Xia, L.; Bhatti, D. L.; Wang, X. Y.; Vazquez-Guardado, A.; Ning, X.; Shen, X. R.; Sang, T.; Ma, R. X. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl. Acad. Sci. USA 2018, 115, E1374-E1383.
[60]
Adelsberger, H.; Garaschuk, O.; Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 2005, 8, 988-990.
[61]
Lütcke, H.; Murayama, M.; Hahn, T.; Margolis, D. J.; Astori, S.; Borgloh, S. M. Z. A.; Göbel, W.; Yang, Y.; Tang, W. N.; Kügler, S. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 2010, 4, 9.
[62]
Sych, Y.; Chernysheva, M.; Sumanovski, L. T.; Helmchen, F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat. Methods 2019, 16, 553-560.
[63]
Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W. et al. Randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896-908.
[64]
Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 2019, 15, 234-242.
[65]
Mayberg, H. S.; Lozano, A. M.; Voon, V.; McNeely, H. E.; Seminowicz, D.; Hamani, C.; Schwalb, J. M.; Kennedy, S. H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651-660.
[66]
Perlmutter, J. S.; Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 2006, 29, 229-257.
[67]
Yuk, H.; Lu, B. Y.; Zhao, X. H. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642-1667.
[68]
Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275-309.
[69]
Merrill, D. R.; Bikson, M.; Jefferys, J. G. R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171-198.
[70]
Rousche, P. J.; Normann, R. A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 1998, 82, 1-15.
[71]
Wise, K. D.; Anderson, D. J.; Hetke, J. F.; Kipke, D. R.; Najafi, K. Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proc. IEEE 2004, 92, 76-97.
[72]
Johnson, M. D.; Lim, H. H.; Netoff, T. I.; Connolly, A. T.; Johnson, N.; Roy, A.; Holt, A.; Lim, K. O.; Carey, J. R.; Vitek, J. L. et al. Neuromodulation for brain disorders: Challenges and opportunities. IEEE Trans. Biomed. Eng. 2013, 60, 610-624.
[73]
Salatino, J. W.; Ludwig, K. A.; Kozai, T. D. Y.; Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 2017, 1, 862-877.
[74]
Minev, I. R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E. M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159-163.
[75]
Vachicouras, N.; Tarabichi, O.; Kanumuri, V. V.; Tringides, C. M.; Macron, J.; Fallegger, F.; Thenaisie, Y.; Epprecht, L.; McInturff, S.; Qureshi, A. A. et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci. Transl. Med. 2019, 11, eaax9487.
[76]
Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773-2778.
[77]
Boehler, C.; Vieira, D. M.; Egert, U.; Asplund, M. NanoPt—A nanostructured electrode coating for neural recording and microstimulation. ACS Appl. Mater. Interfaces 2020, 12, 14855-14865.
[78]
Abbott, J.; Ye, T. Y.; Krenek, K.; Gertner, R. S.; Ban, S.; Kim, Y.; Qin, L.; Wu, W. X.; Park, H.; Ham, D. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 2020, 4, 232-241.
[79]
Chen, C.; Ruan, S. C.; Bai, X.; Lin, C. M.; Xie, C. G.; Lee, I. S. Patterned iridium oxide film as neural electrode interface: Biocompatibility and improved neurite outgrowth with electrical stimulation. Mater. Sci. Eng. C 2019, 103, 109865.
[80]
Chen, N.; Tian, L. L.; Patil, A. C.; Peng, S. J.; Yang, I. H.; Thakor, N. V.; Ramakrishna, S. Neural interfaces engineered via micro- and nanostructured coatings. Nano Today 2017, 14, 59-83.
[81]
Lu, L. L.; Fu, X. F.; Liew, Y.; Zhang, Y. Y.; Zhao, S. Y.; Xu, Z.; Zhao, J. N.; Li, D.; Li, Q. W.; Stanley, G. B. et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 2019, 19, 1577-1586.
[82]
Wang, K. Z.; Frewin, C. L.; Esrafilzadeh, D.; Yu, C. C.; Wang, C. Y.; Pancrazio, J. J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. High-performance graphene-fiber-based neural recording microelectrodes. Adv. Mater. 2019, 31, 1805867.
[83]
Gutruf, P.; Yin, R. T.; Lee, K. B.; Ausra, J.; Brennan, J. A.; Qiao, Y.; Xie, Z. Q.; Peralta, R.; Talarico, O.; Murillo, A. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742.
[84]
Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263-1268.
[85]
Won, S. M.; Song, E. M.; Reeder, J. T.; Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 2020, 181, 115-135.
[86]
Pashaie, R.; Anikeeva, P.; Lee, J. H.; Prakash, R.; Yizhar, O.; Prigge, M.; Chander, D.; Richner, T. J.; Williams, J. Optogenetic brain interfaces. IEEE Rev. Biomed. Eng. 2014, 7, 3-30.
[87]
Gradinaru, V.; Thompson, K. R.; Zhang, F.; Mogri, M.; Kay, K.; Schneider, M. B.; Deisseroth, K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 2007, 27, 14231-14238.
[88]
Williams, J. C.; Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 2013, 5, 177ps6.
[89]
Wang, L. L.; Zhong, C.; Ke, D. N.; Ye, F. M.; Tu, J.; Wang, L. P.; Lu, Y. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater. 2018, 6, 1800427.
[90]
Kim, D.; Yokota, T.; Suzuki, T.; Lee, S.; Woo, T.; Yukita, W.; Koizumi, M.; Tachibana, Y.; Yawo, H.; Onodera, H. et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 2020, 117, 21138-21146.
[91]
Wu, F.; Stark, E.; Ku, P. C.; Wise, K. D.; Buzsáki, G.; Yoon, E. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 2015, 88, 1136-1148.
[92]
Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, P. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211-216.
[93]
Qazi, R.; Gomez, A. M.; Castro, D. C.; Zou, Z. N.; Sim, J. Y.; Xiong, Y. Y.; Abdo, J.; Kim, C. Y.; Anderson, A.; Lohner, F. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 2019, 3, 655-669.
[94]
Zhang, Y.; Castro, D. C.; Han, Y.; Wu, Y. X.; Guo, H. X.; Weng, Z. Y.; Xue, Y. G.; Ausra, J.; Wang, X. J.; Li, R. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 21427-21437.
[95]
Jeong, J. W.; McCall, J. G.; Shin, G.; Zhang, Y. H.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J. Y.; Jang, K. I.; Shi, Y. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 2015, 162, 662-674.
[96]
Gutruf, P.; Krishnamurthi, V.; Vázquez-Guardado, A.; Xie, Z. Q.; Banks, A.; Su, C. J.; Xu, Y. S.; Haney, C. R.; Waters, E. A.; Kandela, I. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 2018, 1, 652-660.
[97]
Zhang, X.; Medow, J. E.; Iskandar, B. J.; Wang, F.; Shokoueinejad, M.; Koueik, J.; Webster, J. G. Invasive and noninvasive means of measuring intracranial pressure: A review. Physiol. Meas. 2017, 38, R143-R182.
[98]
Kim, M. O.; Eide, P. K.; O’Rourke, M. F.; Adji, A.; Avolio, A. P. Intracranial pressure waveforms are more closely related to central aortic than radial pressure waveforms: Implications for pathophysiology and therapy. In Intracranial Pressure and Brain Monitoring XV; Ang, B. T., Ed.; Springer: Cham, 2016; pp 61-64.
[99]
Evensen, K. B.; O’Rourke, M.; Prieur, F.; Holm, S.; Eide, P. K. Non-invasive estimation of the intracranial pressure waveform from the central arterial blood pressure waveform in idiopathic normal pressure hydrocephalus patients. Sci. Rep. 2018, 8, 4714.
[100]
Gosling, R. G.; King, D. H. The role of measurement in peripheral vascular surgery: Arterial assessment by Doppler-shift ultrasound. Proc. R. Soc. Med. 1974, 67, 447-449.
[101]
Behrens, A.; Lenfeldt, N.; Ambarki, K.; Malm, J.; Eklund, A.; Koskinen, L. O. Transcranial Doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery 2010, 66, 1050-1057.
[102]
Evensen, K. B.; Eide, P. K. Measuring intracranial pressure by invasive, less invasive or non-invasive means: Limitations and avenues for improvement. Fluids Barriers CNS 2020, 17, 34.
[103]
Marchbanks, R. J.; Reid, A.; Martin, A. M.; Brightwell, A. P.; Bateman, D. The effect of raised intracranial pressure on intracochlear fluid pressure: Three case studies. Br. J. Audiol. 1987, 21, 127-130.
[104]
Evensen, K. B.; Paulat, K.; Prieur, F.; Holm, S.; Eide, P. K. Utility of the tympanic membrane pressure waveform for non-invasive estimation of the intracranial pressure waveform. Sci. Rep. 2018, 8, 15776.
[105]
Maissan, I. M.; Dirven, P. J. A. C.; Haitsma, I. K.; Hoeks, S. E.; Gommers, D.; Stolker, R. J. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J. Neurosurg. 2015, 123, 743-747.
[106]
Kerscher, S. R.; Schöni, D.; Neunhoeffer, F.; Wolff, M.; Haas-Lude, K.; Bevot, A.; Schuhmann, M. U. The relation of optic nerve sheath diameter (ONSD) and intracranial pressure (ICP) in pediatric neurosurgery practice—Part II: Influence of wakefulness, method of ICP measurement, intra-individual ONSD-ICP correlation and changes after therapy. Child's Nerv. Syst. 2020, 36, 107-115.
[107]
Zoerle, T.; Caccioppola, A.; D’Angelo, E.; Carbonara, M.; Conte, G.; Avignone, S.; Zanier, E. R.; Birg, T.; Ortolano, F.; Triulzi, F. et al. Optic nerve sheath diameter is not related to intracranial pressure in subarachnoid hemorrhage patients. Neurocrit. Care 2020, 33, 491-498.
[108]
Naldi, A.; Provero, P.; Vercelli, A.; Bergui, M.; Mazzeo, A. T.; Cantello, R.; Tondo, G.; Lochner, P. Optic nerve sheath diameter asymmetry in healthy subjects and patients with intracranial hypertension. Neurol. Sci. 2020, 41, 329-333.
[109]
Heldt, T.; Zoerle, T.; Teichmann, D.; Stocchetti, N. Intracranial pressure and intracranial elastance monitoring in neurocritical care. Annu. Rev. Biomed. Eng. 2019, 21, 523-549.
[110]
Pappu, S.; Lerma, J.; Khraishi, T. Brain CT to assess intracranial pressure in patients with traumatic brain injury. J. Neuroimaging 2016, 26, 37-40.
[111]
Jaeger, M.; Khoo, A. K.; Conforti, D. A.; Cuganesan, R. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus. J. Clin. Neurosci. 2016, 33, 169-172.
[112]
Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS; Bratton, S. L.; Chestnut, R. M.; Ghajar, J.; McConnell Hammond, F. F.; Harris, O. A.; Hartl, R. et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J. Neurotrauma 2007, 24 Suppl 1, S45-S54.
[113]
Yau, Y. H.; Piper, I. R.; Clutton, R. E.; Whittle, I. R. Experimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor. Technical note. J. Neurosurg. 2000, 93, 1072-1077.
[114]
Raboel, P. H.; Bartek, J.; Andresen, M.; Bellander, B. M.; Romner, B. Intracranial pressure monitoring: Invasive versus non-invasive methods—A review. Crit. Care Res. Pract. 2012, 2012, 950393.
[115]
Stendel, R.; Heidenreich, J.; Schilling, A.; Akhavan-Sigari, R.; Kurth, R.; Picht, T.; Pietilä, T.; Suess, O.; Kern, C.; Meisel, J. et al. Clinical evaluation of a new intracranial pressure monitoring device. Acta Neurochir. (Wien) 2003, 145, 185-193.
[116]
Ji, S. Y.; Jang, J.; Hwang, J. C.; Lee, Y.; Lee, J. H.; Park, J. U. Amorphous oxide semiconductor transistors with air dielectrics for transparent and wearable pressure sensor arrays. Adv. Mater. Technol. 2020, 5, 1900928.
[117]
Jang, J.; Jun, Y. S.; Seo, H.; Kim, M.; Park, J. U. Motion detection using tactile sensors based on pressure-sensitive transistor arrays. Sensors 2020, 20, 3624.
[118]
Park, Y. G.; Lee, S.; Park, J. U. Recent progress in wireless sensors for wearable electronics. Sensors 2019, 19, 4353.
[119]
Jang, J.; Kim, H.; Song, Y. M.; Park, J. U. Implantation of electronic visual prosthesis for blindness restoration. Opt. Mater. Express 2019, 9, 3878-3894.
[120]
Coyle, P. Middle cerebral artery occlusion in the young rat. Stroke 1982, 13, 855-859.
[121]
Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71-76.
[122]
Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37-46.
[123]
Yu, L.; Kim, B. J.; Meng, E. Chronically implanted pressure sensors: Challenges and state of the field. Sensors 2014, 14, 20620-20644.
[124]
Fang, H.; Zhao, J. N.; Yu, K. J.; Song, E. M.; Farimani, A. B.; Chiang, C. H.; Jin, X.; Xue, Y. G.; Xu, D.; Du, W. B. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. USA 2016, 113, 11682-11687.
[125]
Xu, K. D.; Li, S. J.; Dong, S. R.; Zhang, S. M.; Pan, G.; Wang, G. M.; Shi, L.; Guo, W.; Yu, C. N.; Luo, J. K. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Healthc. Mater. 2019, 8, 1801649.
[126]
Omidbeigi, M.; Mousavi, M. S.; Meknatkhah, S.; Edalatfar, M.; Bari, A.; Sharif-Alhoseini, M. Telemetric intracranial pressure monitoring: A systematic review. Neurocrit. Care 2021, 34, 291-300.
[127]
Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. N. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.
[128]
Lu, D.; Yan, Y.; Deng, Y. J.; Yang, Q. S.; Zhao, J.; Seo, M. H.; Bai, W. B.; MacEwan, M. R.; Huang, Y. G.; Ray, W. Z. et al. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 2020, 30, 2003754.
[129]
Eftekhari, S.; Westgate, C. S. J.; Johansen, K. P.; Bruun, S. R.; Jensen, R. H. Long-term monitoring of intracranial pressure in freely-moving rats; impact of different physiological states. Fluids Barriers CNS 2020, 17, 39.
[130]
Dong, X. W. Current strategies for brain drug delivery. Theranostics 2018, 8, 1481-1493.
[131]
Haumann, R.; Videira, J. C.; Kaspers, G. J. L.; van Vuurden, D. G.; Hulleman, E. Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS Drugs 2020, 34, 1121-1131.
[132]
Chen, Y.; Dalwadi, G.; Benson, H. A. E. Drug delivery across the blood-brain barrier. Curr. Drug Deliv. 2004, 1, 361-376.
[133]
Patel, M. M.; Patel, B. M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs 2017, 31, 109-133.
[134]
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 2004, 5, 347-360.
[135]
Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41-53.
[136]
Lu, C. T.; Zhao, Y. Z.; Wong, H. L.; Cai, J.; Peng, L.; Tian, X. Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine 2014, 9, 2241-2257.
[137]
Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076-2080.
[138]
Lonser, R. R.; Sarntinoranont, M.; Morrison, P. F.; Oldfield, E. H. Convection-enhanced delivery to the central nervous system. J. Neurosurg. 2015, 122, 697-706.
[139]
Greig, N. H. Optimizing drug delivery to brain tumors. Cancer Treat. Rev. 1987, 14, 1-28.
[140]
Harbaugh, R. E.; Saunders, R. L.; Reeder, R. F. Use of implantable pumps for central nervous system drug infusions to treat neurological disease. Neurosurgery 1988, 23, 693-698.
[141]
DiMeco, F.; Li, K. W.; Tyler, B. M.; Wolf, A. S.; Brem, H.; Olivi, A. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats. J. Neurosurg. 2002, 97, 1173-1178.
[142]
Neuwelt, E. A. Mechanisms of disease: The blood-brain barrier. Neurosurgery 2004, 54, 131-142.
[143]
Sim, J. Y.; Haney, M. P.; Park, S. I.; McCall, J. G.; Jeong, J.W. Microfluidic neural probes: In vivo tools for advancing neuroscience. Lab Chip 2017, 17, 1406-1435.
[144]
Canales, A.; Jia, X. T.; Froriep, U. P.; Koppes, R. A.; Tringides, C. M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 2015, 33, 277-284.
[145]
Jeong, J. W.; McCall, J. G.; Zhang, Y.; Huang, Y.; Bruchas, M. R.; Rogers, J. A. Soft microfluidic neural probes for wireless drug delivery in freely behaving mice. In Proceedings of the 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 2015, pp 2264-2267.
[146]
Ramadi, K. B.; Bashyam, A.; Frangieh, C. J.; Rousseau, E. B.; Cotler, M. J.; Langer, R.; Graybiel, A. M.; Cima, M. J. Computationally guided intracerebral drug delivery via chronically implanted microdevices. Cell Rep. 2020, 31, 107734.
[147]
Altuna, A.; Bellistri, E.; Cid, E.; Aivar, P.; Gal, B.; Berganzo, J.; Gabriel, G.; Guimerà, A.; Villa, R.; Fernández, L. J. et al. SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 2013, 13, 1422-1430.
[148]
Cotler, M. J.; Rousseau, E. B.; Ramadi, K. B.; Fang, J.; Graybiel, A. M.; Langer, R.; Cima, M. J. Steerable microinvasive probes for localized drug delivery to deep tissue. Small 2019, 15, 1901459.
[149]
McCall, J. G.; Qazi, R.; Shin, G.; Li, S.; Ikram, M. H.; Jang, K. I.; Liu, Y. H.; Al-Hasani, R.; Bruchas, M. R.; Jeong, J. W. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 2017, 12, 219-237.
[150]
Shin, H.; Lee, H. J.; Chae, U.; Kim, H.; Kim, J.; Choi, N.; Woo, J.; Cho, Y.; Justin Lee, C.; Yoon, E. S. et al. Neural probes with multi-drug delivery capability. Lab Chip 2015, 15, 3730-3737.
[151]
Shin, H.; Son, Y.; Chae, U.; Kim, J.; Choi, N.; Lee, H. J.; Woo, J.; Cho, Y.; Yang, S. H.; Lee, C. J. et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat. Commun. 2019, 10, 3777.
[152]
Cai, D. J.; Aharoni, D.; Shuman, T.; Shobe, J.; Biane, J.; Song, W. L.; Wei, B.; Veshkini, M.; La-Vu, M.; Lou, J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 2016, 534, 115-118.
[153]
Lee, H. J.; Son, Y.; Kim, D.; Kim, Y. K.; Choi, N.; Yoon, E. S.; Cho, I. J. A new thin silicon microneedle with an embedded microchannel for deep brain drug infusion. Sens. Actuators B Chem. 2015, 209, 413-422.
[154]
Parada, M. A.; Puig de Parada, M.; Hoebel, B. G. A new triple-channel swivel for fluid delivery in the range of intracranial (10 nL) and intravenous (100 μL) self-administration volumes and also suitable for microdialysis. J. Neurosci. Methods 1994, 54, 1-8.
[155]
Spieth, S.; Schumacher, A.; Kallenbach, C.; Messner, S.; Zengerle, R. The NeuroMedicator—A micropump integrated with silicon microprobes for drug delivery in neural research. J. Micromech. Microeng. 2012, 22, 065020.
[156]
Dagdeviren, C.; Ramadi, K. B.; Joe, P.; Spencer, K.; Schwerdt, H. N.; Shimazu, H.; Delcasso, S.; Amemori, K. I.; Nunez-Lopez, C.; Graybiel, A. M. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med. 2018, 10, eaan2742.
[157]
Noh, K. N.; Park, S. I.; Qazi, R.; Zou, Z. N.; Mickle, A. D.; Grajales-Reyes, J. G.; Jang, K. I.; Gereau IV, R. W.; Xiao, J. L.; Rogers, J. A. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 2018, 14, 1702479.
[158]
Roh, D.; Park, S. Brain multimodality monitoring: Updated perspectives. Curr. Neurol. Neurosci. Rep. 2016, 16, 56.
[159]
Tisdall, M. M.; Smith, M. Multimodal monitoring in traumatic brain injury: Current status and future directions. BJA Br. J. Anaesth. 2007, 99, 61-67.
[160]
González, R. G. Imaging-guided acute ischemic stroke therapy: From “time is brain” to “physiology is brain”. AJNR Am. J. Neuroradiol. 2006, 27, 728-735.
[161]
Saver, J. L.; Smith, E. E.; Fonarow, G. C.; Reeves, M. J.; Zhao, X.; Olson, D. M.; Schwamm, L. H. The “golden hour” and acute brain ischemia. Stroke 2010, 41, 1431-1439.
[162]
Zhao, Z. T.; Luan, L.; Wei, X. L.; Zhu, H. L.; Li, X.; Lin, S. Q.; Siegel, J. J.; Chitwood, R. A.; Xie, C. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 2017, 17, 4588-4595.
[163]
Park, S.; Guo, Y. Y.; Jia, X. T.; Choe, H. K.; Grena, B.; Kang, J.; Park, J.; Lu, C.; Canales, A.; Chen, R. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 2017, 20, 612-619.
[164]
Mickle, A. D.; Won, S. M.; Noh, K. N.; Yoon, J.; Meacham, K. W.; Xue, Y. G.; McIlvried, L. A.; Copits, B. A.; Samineni, V. K.; Crawford, K. E. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019, 565, 361-365.
[165]
An, H. S.; Park, Y. G.; Kim, K.; Nam, Y. S.; Song, M. H.; Park, J. U. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv. Sci. 2019, 6, 1901603.
[166]
Cheong, W. H.; Oh, B.; Kim, S. H.; Jang, J.; Ji, S.; Lee, S.; Cheon, J.; Yoo, S.; Lee, S. Y.; Park, J. U. Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy 2019, 62, 230-238.
[167]
Jo, Y.; Young Kim, J.; Kim, S. Y.; Seo, Y. H.; Jang, K. S.; Yeon Lee, S.; Jung, S.; Ryu, B. H.; Kim, H. S.; Park, J. U. et al. 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers. Nanoscale 2017, 9, 5072-5084.
[168]
Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782-791.
[169]
Tao, H.; Hwang, S. W.; Marelli, B.; An, B.; Moreau, J. E.; Yang, M.; Brenckle, M. A.; Kim, S.; Kaplan, D. L.; Rogers, J. A. et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. USA 2014, 111, 17385-17389.
[170]
Bettinger, C. J.; Bao, Z. N. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22, 651-655.
[171]
Irimia-Vladu, M.; Głowacki, E. D.; Troshin, P. A.; Schwabegger, G.; Leonat, L.; Susarova, D. K.; Krystal, O.; Ullah, M.; Kanbur, Y.; Bodea, M. A. et al. Indigo—A natural pigment for high performance Ambipolar organic field effect transistors and circuits. Adv. Mater. 2012, 24, 375-380.
[172]
Lei, T.; Guan, M.; Liu, J.; Lin, H. C.; Pfattner, R.; Shaw, L.; McGuire, A. F.; Huang, T. C.; Shao, L. L.; Cheng, K. T. et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl. Acad. Sci. USA 2017, 114, 5107-5112.
[173]
Omenetto, F. G.; Kaplan, D. L. A new route for silk. Nat. Photonics 2008, 2, 641-643.
[174]
Jin, H. J.; Park, J.; Karageorgiou, V.; Kim, U. J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 2005, 15, 1241-1247.
[175]
Lu, Q.; Hu, X.; Wang, X. Q.; Kluge, J. A.; Lu, S. Z.; Cebe, P.; Kaplan, D. L. Water-insoluble silk films with silk I structure. Acta Biomater. 2010, 6, 1380-1387.
[176]
Jiang, C.; Wang, X.; Gunawidjaja, R.; Lin, Y. H.; Gupta, M. K.; Kaplan, D. L.; Naik, R. R.; Tsukruk, V. V. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 2007, 17, 2229-2237.
[177]
Perry, H.; Gopinath, A.; Kaplan, D. L.; Dal Negro, L.; Omenetto, F. G. Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 2008, 20, 3070-3072.
[178]
Zhou, Y. H.; Khan, T. M.; Liu, J. C.; Fuentes-Hernandez, C.; Shim, J. W.; Najafabadi, E.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 2014, 15, 661-666.
[179]
Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.
[180]
Huang, X.; Liu, Y. H.; Hwang, S. W.; Kang, S. K.; Patnaik, D.; Cortes, J. F.; Rogers, J. A. Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 2014, 26, 7371-7377.
[181]
Chang, J. K.; Fang, H.; Bower, C. A.; Song, E. M.; Yu, X. G.; Rogers, J. A. Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl. Acad. Sci. USA 2017, 114, E5522-E5529.
[182]
Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905-3911.
[183]
Kang, S. K.; Hwang, S. W.; Yu, S.; Seo, J. H.; Corbin, E. A.; Shin, J.; Wie, D. S.; Bashir, R.; Ma, Z. Q.; Rogers, J. A. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 2015, 25, 1789-1797.
[184]
Yin, L.; Cheng, H. Y.; Mao, S. M.; Haasch, R.; Liu, Y. H.; Xie, X.; Hwang, S. W.; Jain, H.; Kang, S. K.; Su, Y. W. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 2014, 24, 645-658.
[185]
Kang, S. K.; Park, G.; Kim, K.; Hwang, S. W.; Cheng, H. Y.; Shin, J.; Chung, S.; Kim, M.; Yin, L.; Lee, J. C. et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 2015, 7, 9297-9305.
[186]
Badawy, W. A.; Al-Kharafi, F. M. Corrosion and passivation behaviors of molybdenum in aqueous solutions of different pH. Electrochim. Acta 1998, 44, 693-702.
[187]
Luo, M. D.; Martinez, A. W.; Song, C.; Herrault, F.; Allen, M. G. A microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromechan. Syst. 2014, 23, 4-13.
[188]
Yao, Q. Q.; Liu, Y. X.; Selvaratnam, B.; Koodali, R. T.; Sun, H. L. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J. Control. Release 2018, 279, 69-78.
[189]
Macdonald, M. L.; Samuel, R. E.; Shah, N. J.; Padera, R. F.; Beben, Y. M.; Hammond, P. T. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 2011, 32, 1446-1453.
[190]
Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377-1397.
[191]
Koo, J.; Kim, S. B.; Choi, Y. S.; Xie, Z. Q.; Bandodkar, A. J.; Khalifeh, J.; Yan, Y.; Kim, H.; Pezhouh, M. K.; Doty, K. et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 2020, 6, eabb1093.
[192]
Choi, Y. S.; Koo, J.; Lee, Y. J.; Lee, G.; Avila, R.; Ying, H. Z.; Reeder, J.; Hambitzer, L.; Im, K.; Kim, J. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 2020, 30, 2000941.
[193]
Goriely, A.; Geers, M. G. D.; Holzapfel, G. A.; Jayamohan, J.; Jérusalem, A.; Sivaloganathan, S.; Squier, W.; van Dommelen, J. A. W.; Waters, S.; Kuhl, E. Mechanics of the brain: Perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 2015, 14, 931-965.
[194]
Kim, K.; Park, Y. G.; Hyun, B. G.; Choi, M.; Park, J. U. Recent advances in transparent electronics with stretchable forms. Adv. Mater. 2019, 31, 1804690.
[195]
Park, J. Y.; Hyun, B. G.; An, B. W.; Im, H. G.; Park, Y. G.; Jang, J.; Park, J. U.; Bae, B. S. Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics. ACS Appl. Mater. Interfaces 2017, 9, 20299-20305.
[196]
Oh, S. J.; Kim, T. G.; Kim, S. Y.; Jo, Y.; Lee, S. S.; Kim, K.; Ryu, B. H.; Park, J. U.; Choi, Y.; Jeong, S. Newly designed Cu/Cu10Sn3 core/shell nanoparticles for liquid phase-photonic sintered copper electrodes: Large-area, low-cost transparent flexible electronics. Chem. Mater. 2016, 28, 4714-4723.
[197]
Lee, S.; Kim, S. W.; Ghidelli, M.; An, H. S.; Jang, J.; Bassi, A. L.; Lee, S. Y.; Park, J. U. Integration of transparent supercapacitors and electrodes using nanostructured metallic glass films for wirelessly rechargeable, skin heat patches. Nano Lett. 2020, 20, 4872-4881.
[198]
Jang, J.; Hyun, B. G.; Ji, S.; Cho, E.; An, B. W.; Cheong, W. H.; Park, J. U. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater. 2017, 9, e432.
[199]
Zhang, Z. X.; Wang, L.; Yu, H. T.; Zhang, F.; Tang, L.; Feng, Y. Y.; Feng, W. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl. Mater. Interfaces 2020, 12, 15657-15666.
[200]
Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057-1065.
[201]
Yoon, J. H.; Kim, S. M.; Park, H. J.; Kim, Y. K.; Oh, D. X.; Cho, H. W.; Lee, K. G.; Hwang, S. Y.; Park, J.; Choi, B. G. Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosens. Bioelectron. 2020, 150, 111946.
[202]
Park, Y. G.; Kim, H.; Park, S. Y.; Kim, J. Y.; Park, J. U. Instantaneous and repeatable self-healing of fully metallic electrodes at ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 41497-41505.
[203]
Ding, Y. R.; Zeng, M. Q.; Fu, L. Surface chemistry of gallium-based liquid metals. Matter 2020, 3, 1477-1506.
[204]
Park, Y. G.; Min, H.; Kim, H.; Zhexembekova, A.; Lee, C. Y.; Park, J. U. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett. 2019, 19, 4866-4872.
[205]
Park, Y. G.; An, H. S.; Kim, J. Y.; Park, J. U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 2019, 5, eaaw2844.
Nano Research
Pages 3070-3095
Cite this article:
Kwon YW, Jun YS, Park Y-G, et al. Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14(9): 3070-3095. https://doi.org/10.1007/s12274-021-3476-y
Topics:
Part of a topical collection:

906

Views

20

Crossref

18

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 28 November 2020
Revised: 24 March 2021
Accepted: 28 March 2021
Published: 24 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return