Graphical Abstract

Plasmon coupling is an essential strategy to realize strong local electromagnetic (EM) field which is crucial for high-performance plasmonic devices. In this work, multiple plasmon couplings are demonstrated in three-dimensional (3D) hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone (AgNC) arrays decorated with high-density gold nanoparticles (AuNPs) which are fabricated by a template-assisted physical vapor deposition process. Strong interparticle coupling, particle-film coupling, inter-cone coupling, and particle-cone coupling are revealed by numerical simulations in such composite nanostructures, which produce intense and high-density EM hot spots, boosting highly sensitive and reproducible surface enhanced Raman scattering (SERS) detection with an enhancement factor of ~ 1.74 × 108. Furthermore, a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range. These results offer new ideas to develop novel plasmonic devices, and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis.
Wang, J.; Koo, K. M.; Wang, Y. L.; Trau, M. Engineering state-of- the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv. Sci. 2019, 6, 1900730.
Bell, S. E. J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M. L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. , Int. Ed. 2020, 59, 5454–5462.
Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375–1379.
Xu, K. C.; Zhou, R.; Takei, K.; Hong, M. H. Toward flexible surface- enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925.
Zhao, J.; Sun, W. N.; Sun, W. J.; Liu, L. Z.; Xia, X. X.; Quan, B. G.; Jin, A. Z.; Gu, C. Z.; Li, J. J. Rapid templated fabrication of large- scale, high-density metallic nanocone arrays and SERS applications. J. Mater. Chem. C 2014, 2, 9987–9992.
Das, G.; Battista, E.; Manzo, G.; Causa, F.; Netti, P. A.; Fabrizio, E. D. Large-scale plasmonic nanocones array for spectroscopy detection. ACS Appl. Mater. Interfaces 2015, 7, 23597–23604.
Lee, S.; Mayer, K. M.; Hafner, J. H. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal. Chem. 2009, 81, 4450–4455.
Zheng, X.; Chen, Y. H.; Chen, Y.; Bi, N.; Qi, H. B.; Qin, M. H.; Song, D.; Zhang, H. Q.; Tian, Y. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering. J. Raman Spectrosc. 2012, 43, 1374–1380.
Khoury, C. G.; Vo-Dinh, T. Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization. J. Phys. Chem. C 2008, 112, 18849–18859.
Park, S.; Lee, J.; Ko, H. Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces 2017, 9, 44088–44095.
Wu, L. X.; Reinhard, B. M. Probing subdiffraction limit separations with Plasmon coupling microscopy: Concepts and applications. Chem. Soc. Rev. 2014, 43, 3884–3897.
Ghosh, G. K.; Pal, T. Interparticle coupling effect on the surface Plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.
Yang, Y.; Gu, C. Z.; Li, J. J. Sub-5 nm metal nanogaps: Physical properties, fabrication methods, and device applications. Small 2019, 15, 1804177.
Squillaci, M. A.; Zhong, X. L.; Peyruchat, L.; Genet, C.; Ebbesen, T. W.; Samorì, P. 2D hybrid networks of gold nanoparticles: Mechanoresponsive optical humidity sensors. Nanoscale 2019, 11, 19315–19318.
Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández- Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337, 1072–1074.
Alber, I.; Sigle, W.; Demming-Janssen, F.; Neumann, R.; Trautmann, C.; van Aken, P. A.; Toimil-Molares, M. E. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. ACS Nano 2012, 6, 9711–9717.
Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114–3122.
Huang, F. M.; Wilding, D.; Speed, J. D.; Russell, A. E.; Bartlett, P. N.; Baumberg, J. J. Dressing plasmons in particle-in-cavity architectures. Nano Lett. 2011, 11, 1221–1226.
Speed, J. D.; Johnson, R. P.; Hugall, J. T.; Lal, N. N.; Bartlett, P. N.; Baumberg, J. J.; Russell, A. E. SERS from molecules bridging the gap of particle-in-cavity structures. Chem. Commun. 2011, 47, 6335–6337.
Lee, S.; Kim, J.; Yang, H.; Cortés, E.; Kang, S.; Han, S. W. Particle- in-a-frame nanostructures with interior nanogaps. Angew. Chem. , Int. Ed. 2019, 58, 15890–15894.
Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 2010, 4, 1664–1670.
Chow, T. H.; Lai, Y. H.; Cui, X. M.; Lu, W. Z.; Zhuo, X. L.; Wang, J. F. Colloidal gold nanorings and their plasmon coupling with gold nanospheres. Small 2019, 15, 1902608.
Lee, S.; Choi, I. Fabrication strategies of 3D plasmonic structures for SERS. BioChip J. 2019, 13, 30–42.
Lee, S.; Hahm, M. G.; Vajtai, R.; Hashim, D. P.; Thurakitseree, T.; Chipara, A. C.; Ajayan, P. M.; Hafner, J. H. Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates. Adv. Mater. 2012, 24, 5261–5266.
Lee, Y.; Lee, J.; Lee, T. K.; Park, J.; Ha, M.; Kwak, S. K.; Ko, H. Particle-on-film gap plasmons on antireflective ZnO nanocone arrays for molecular-level surface-enhanced Raman scattering sensors. ACS Appl. Mater. Interfaces 2015, 7, 26421–26429.
Zuo, Z. W.; Zhu, K.; Cui, G. L.; Huang, W. X.; Qu, J.; Shi, Y.; Liu, Y. S.; Ji, G. B. Improved antireflection properties and optimized structure for passivation of well-separated, vertical silicon nanowire arrays for solar cell applications. Sol. Energy Mater. Sol. Cells 2014, 125, 248–252.
Lee, T.; Kwon, S.; Jung, S.; Lim H.; Lee, J. J. Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res. 2019, 12, 2554–2558.
Zuo, Z. W.; Zhu, K.; Ning, L. X.; Cui, G. L.; Qu, J.; Cheng, Y.; Wang, J. Z.; Shi, Y.; Xu, D. S.; Xin, Y. Highly sensitive surface enhanced Raman scattering substrates based on Ag decorated Si nanocone arrays and their application in trace dimethyl phthalate detection. Appl. Surf. Sci. 2015, 325, 45–51.
Horrer, A.; Schäfer, C.; Broch, K.; Gollmer, D. A.; Rogalski, J.; Fulmes, J.; Zhang, D.; Meixner, A. J.; Schreiber, F.; Kern, D. P. et al. Parallel fabrication of plasmonic nanocone sensing arrays. Small 2013, 9, 3987–3992.
Zhu, Q.; Zhao, X. Y.; Zhang, X. L.; Zhu, A. N.; Gao, R. X.; Zhang, Y. J.; Wang, Y. X.; Chen, L. Au nanocone array with 3D hotspots for biomarker chips. CrystEngComm 2020, 22, 5191–5199.
Liu, D. M.; Wang, Q. K.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci. 2015, 356, 364–369.
Yamauchi, Y.; Wang, L.; Ataee-Esfahani, H.; Fukata, N.; Nagaura, T.; Inoue, S. Electrochemical design of two-dimensional Au nanocone arrays using porous anodic alumina membranes with conical holes. J. Nanosci. Nanotechnol. 2010, 10, 4384–4387.
Mao, H. Y.; Huang, C. J.; Wu, W. G.; Xue, M.; Yang, Y. D.; Xiong, J. J.; Ming, A. J.; Wang, W. B. Wafer-level fabrication of nanocone forests by plasma repolymerization technique for surface-enhanced Raman scattering devices. Appl. Surf. Sci. 2017, 396, 1085–1091.
Mehrvar, L.; Sadeghipari, M.; Tavassoli, S. H.; Mohajerzadeh, S.; Fathipour, M.; Hajihosseini, H. R. Fabrication of Ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering. J. Raman Spectrosc. 2019, 50, 1416–1428.
Hackett, L. P.; Goddard, L. L.; Liu, G. L. Plasmonic nanocone arrays for rapid and detailed cell lysate surface enhanced Raman spectroscopy analysis. Analyst 2017, 142, 4422–4430.
Zhao, W. N.; Wu, Y. Y.; Liu, X. G.; Xu, Y. B.; Wang, S. B.; Xu, Z. M. The fabrication of polymer-nanocone-based 3D Au nanoparticle array and its SERS performance. Appl. Phys. A 2017, 123, 45.
Wu, W.; Hu, M.; Ou, F. S.; Li, Z. Y.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 2010, 21, 255502.
Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Arrays of cone-shaped ZnO Nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater. 2012, 22, 218–224.
Xia, Y. Y.; Mo, X.; Ling, H. Q.; Hang, T.; Li, M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates. J. Electrochem. Soc. 2016, 163, D575−D578.
Gao, R. K.; Song, X. F.; Zhan, C. B.; Weng, C. G.; Cheng, S.; Guo, K.; Ma, N.; Chang, H. F.; Guo, Z. Y.; Luo, L. B. et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem. 2020, 314, 128081.
Hu, Y. S.; Jeon, J.; Seok, T. J.; Lee, S.; Hafner, J. H.; Drezek, R. A.; Choo, H. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: A practical approach to harness in-plane excitation. ACS Nano 2010, 4, 5721–5730.
Wang, Z.; Zheng, C. X.; Zhang, P.; Huang, Z. L.; Zhu, C. H.; Wang, X. J.; Hu, X. Y.; Yan, J. A split-type structure of Ag nanoparticles and Al2O3@Ag@Si nanocone arrays: An ingenious strategy for SERS-based detection. Nanoscale 2020, 12, 4359–4365.
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
Yang, Y.; Callahan, J. M.; Kim, T. H.; Brown, A. S.; Everitt, H. O. Ultraviolet nanoplasmonics: A demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett. 2013, 13, 2837–2841.
Im, H.; Lee, S. H.; Wittenberg, N. J.; Johnson T. W.; Lindquist, N. C.; Nagpal, P.; Norris, D. J.; Oh, S. H. Template-stripped smooth Ag nanohole arrays with silica shells for surface Plasmon resonance biosensing. ACS Nano 2011, 5, 6244–6253.
Lee, K. L.; Hsu, H. Y.; You, M. L.; Chang, C. C.; Pan, M. Y.; Shi, X.; Ueno, K.; Misawa, H.; Wei, P. K. Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures. Sci. Rep. 2017, 7, 44104.
Lassiter, J. B.; McGuire, F.; Mock, J. J.; Ciracì, C.; Hill, R. T.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 2013, 13, 5866–5872.
Zuo, Z. W.; Zhang, S.; Wang, Y. W.; Guo, Y. B.; Sun, L. Y.; Li, K. G.; Cui, G. L. Effective Plasmon coupling in conical cavities for sensitive surface enhanced Raman scattering with quantitative analysis ability. Nanoscale 2019, 11, 17913–17919.
Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745.
Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969.
Fortuni, B.; Inose, T.; Uezono, S.; Toyouchi, S.; Umemoto, K.; Sekine, S.; Fujita, Y.; Ricci, M.; Lu, G.; Masuhara, A. et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem. Commun. 2017, 53, 11298–11301.
Liu, S. S.; Xu, Z. M.; Sun, T. Y.; Zhao, W. N.; Wu, X. H.; Ma, Z. C.; Xu, H. F.; He, J.; Chen, C. H. Large-scale fabrication of polymer/Ag core–shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition. Appl. Phys. A 2014, 115, 979–984.
Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.
Martín, A.; Wang, J. J.; Iacopino, D. Flexible SERS active substrates from ordered vertical Au nanorod arrays. RSC Adv. 2014, 4, 20038– 20043.
Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann- Hogiu, S. Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep. 2013, 3, 3396.
Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58–64.
Zuo, Z. W.; Zhu, K.; Gu, C.; Wen, Y. B.; Cui, G. L.; Qu, J. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection. Appl. Surf. Sci. 2016, 379, 66–72.
Zhou, N. N.; Meng, G. W.; Huang, Z. L.; Ke, Y.; Zhou, Q. T.; Hu, X. Y. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 2016, 141, 5864–5869.
Wang Y. C.; DuChene J. S.; Huo, F. W.; Wei, W. D. An in situ approach for facile fabrication of robust and scalable SERS substrates. Nanoscale 2014, 6, 7232–7236.
Gao, X. Y.; Feng, H. L.; Ma, J. M.; Zhang, Z. Y.; Lu, J. X.; Chen, Y. S.; Yang, S. E.; Gu, J. H. Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model. Physica B Condens Matter 2010, 405, 1922–1926.
Tsui, K. H.; Lin, Q. F.; Chou, H. T.; Zhang, Q. P.; Fu, H. Y.; Qi, P. F.; Fan, Z. Y. Low-cost, flexible, and self-cleaning 3D nanocone anti- reflection films for high-efficiency photovoltaics. Adv. Mater. 2014, 26, 2805–2811.