AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiple plasmon couplings in 3D hybrid Au-nanoparticles- decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering

Zewen Zuo( )Lianye SunYongbin GuoLujun ZhangJunhu LiKuanguo LiGuanglei Cui
Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Physics and Electronics Information Anhui Normal UniversityWuhu 241002 China
Show Author Information

Graphical Abstract

Abstract

Plasmon coupling is an essential strategy to realize strong local electromagnetic (EM) field which is crucial for high-performance plasmonic devices. In this work, multiple plasmon couplings are demonstrated in three-dimensional (3D) hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone (AgNC) arrays decorated with high-density gold nanoparticles (AuNPs) which are fabricated by a template-assisted physical vapor deposition process. Strong interparticle coupling, particle-film coupling, inter-cone coupling, and particle-cone coupling are revealed by numerical simulations in such composite nanostructures, which produce intense and high-density EM hot spots, boosting highly sensitive and reproducible surface enhanced Raman scattering (SERS) detection with an enhancement factor of ~ 1.74 × 108. Furthermore, a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range. These results offer new ideas to develop novel plasmonic devices, and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis.

Electronic Supplementary Material

Download File(s)
12274_2021_3477_MOESM1_ESM.pdf (2.9 MB)

References

1

Wang, J.; Koo, K. M.; Wang, Y. L.; Trau, M. Engineering state-of- the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv. Sci. 2019, 6, 1900730.

2

Bell, S. E. J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M. L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. , Int. Ed. 2020, 59, 5454–5462.

3

Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375–1379.

4

Xu, K. C.; Zhou, R.; Takei, K.; Hong, M. H. Toward flexible surface- enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925.

5

Zhao, J.; Sun, W. N.; Sun, W. J.; Liu, L. Z.; Xia, X. X.; Quan, B. G.; Jin, A. Z.; Gu, C. Z.; Li, J. J. Rapid templated fabrication of large- scale, high-density metallic nanocone arrays and SERS applications. J. Mater. Chem. C 2014, 2, 9987–9992.

6

Das, G.; Battista, E.; Manzo, G.; Causa, F.; Netti, P. A.; Fabrizio, E. D. Large-scale plasmonic nanocones array for spectroscopy detection. ACS Appl. Mater. Interfaces 2015, 7, 23597–23604.

7

Lee, S.; Mayer, K. M.; Hafner, J. H. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal. Chem. 2009, 81, 4450–4455.

8

Zheng, X.; Chen, Y. H.; Chen, Y.; Bi, N.; Qi, H. B.; Qin, M. H.; Song, D.; Zhang, H. Q.; Tian, Y. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering. J. Raman Spectrosc. 2012, 43, 1374–1380.

9

Khoury, C. G.; Vo-Dinh, T. Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization. J. Phys. Chem. C 2008, 112, 18849–18859.

10

Park, S.; Lee, J.; Ko, H. Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces 2017, 9, 44088–44095.

11

Wu, L. X.; Reinhard, B. M. Probing subdiffraction limit separations with Plasmon coupling microscopy: Concepts and applications. Chem. Soc. Rev. 2014, 43, 3884–3897.

12

Ghosh, G. K.; Pal, T. Interparticle coupling effect on the surface Plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

13

Yang, Y.; Gu, C. Z.; Li, J. J. Sub-5 nm metal nanogaps: Physical properties, fabrication methods, and device applications. Small 2019, 15, 1804177.

14

Squillaci, M. A.; Zhong, X. L.; Peyruchat, L.; Genet, C.; Ebbesen, T. W.; Samorì, P. 2D hybrid networks of gold nanoparticles: Mechanoresponsive optical humidity sensors. Nanoscale 2019, 11, 19315–19318.

15

Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández- Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337, 1072–1074.

16

Alber, I.; Sigle, W.; Demming-Janssen, F.; Neumann, R.; Trautmann, C.; van Aken, P. A.; Toimil-Molares, M. E. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. ACS Nano 2012, 6, 9711–9717.

17

Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114–3122.

18

Huang, F. M.; Wilding, D.; Speed, J. D.; Russell, A. E.; Bartlett, P. N.; Baumberg, J. J. Dressing plasmons in particle-in-cavity architectures. Nano Lett. 2011, 11, 1221–1226.

19

Speed, J. D.; Johnson, R. P.; Hugall, J. T.; Lal, N. N.; Bartlett, P. N.; Baumberg, J. J.; Russell, A. E. SERS from molecules bridging the gap of particle-in-cavity structures. Chem. Commun. 2011, 47, 6335–6337.

20

Lee, S.; Kim, J.; Yang, H.; Cortés, E.; Kang, S.; Han, S. W. Particle- in-a-frame nanostructures with interior nanogaps. Angew. Chem. , Int. Ed. 2019, 58, 15890–15894.

21

Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 2010, 4, 1664–1670.

22

Chow, T. H.; Lai, Y. H.; Cui, X. M.; Lu, W. Z.; Zhuo, X. L.; Wang, J. F. Colloidal gold nanorings and their plasmon coupling with gold nanospheres. Small 2019, 15, 1902608.

23

Lee, S.; Choi, I. Fabrication strategies of 3D plasmonic structures for SERS. BioChip J. 2019, 13, 30–42.

24

Lee, S.; Hahm, M. G.; Vajtai, R.; Hashim, D. P.; Thurakitseree, T.; Chipara, A. C.; Ajayan, P. M.; Hafner, J. H. Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates. Adv. Mater. 2012, 24, 5261–5266.

25

Lee, Y.; Lee, J.; Lee, T. K.; Park, J.; Ha, M.; Kwak, S. K.; Ko, H. Particle-on-film gap plasmons on antireflective ZnO nanocone arrays for molecular-level surface-enhanced Raman scattering sensors. ACS Appl. Mater. Interfaces 2015, 7, 26421–26429.

26

Zuo, Z. W.; Zhu, K.; Cui, G. L.; Huang, W. X.; Qu, J.; Shi, Y.; Liu, Y. S.; Ji, G. B. Improved antireflection properties and optimized structure for passivation of well-separated, vertical silicon nanowire arrays for solar cell applications. Sol. Energy Mater. Sol. Cells 2014, 125, 248–252.

27

Lee, T.; Kwon, S.; Jung, S.; Lim H.; Lee, J. J. Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res. 2019, 12, 2554–2558.

28

Zuo, Z. W.; Zhu, K.; Ning, L. X.; Cui, G. L.; Qu, J.; Cheng, Y.; Wang, J. Z.; Shi, Y.; Xu, D. S.; Xin, Y. Highly sensitive surface enhanced Raman scattering substrates based on Ag decorated Si nanocone arrays and their application in trace dimethyl phthalate detection. Appl. Surf. Sci. 2015, 325, 45–51.

29

Horrer, A.; Schäfer, C.; Broch, K.; Gollmer, D. A.; Rogalski, J.; Fulmes, J.; Zhang, D.; Meixner, A. J.; Schreiber, F.; Kern, D. P. et al. Parallel fabrication of plasmonic nanocone sensing arrays. Small 2013, 9, 3987–3992.

30

Zhu, Q.; Zhao, X. Y.; Zhang, X. L.; Zhu, A. N.; Gao, R. X.; Zhang, Y. J.; Wang, Y. X.; Chen, L. Au nanocone array with 3D hotspots for biomarker chips. CrystEngComm 2020, 22, 5191–5199.

31

Liu, D. M.; Wang, Q. K.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci. 2015, 356, 364–369.

32

Yamauchi, Y.; Wang, L.; Ataee-Esfahani, H.; Fukata, N.; Nagaura, T.; Inoue, S. Electrochemical design of two-dimensional Au nanocone arrays using porous anodic alumina membranes with conical holes. J. Nanosci. Nanotechnol. 2010, 10, 4384–4387.

33

Mao, H. Y.; Huang, C. J.; Wu, W. G.; Xue, M.; Yang, Y. D.; Xiong, J. J.; Ming, A. J.; Wang, W. B. Wafer-level fabrication of nanocone forests by plasma repolymerization technique for surface-enhanced Raman scattering devices. Appl. Surf. Sci. 2017, 396, 1085–1091.

34

Mehrvar, L.; Sadeghipari, M.; Tavassoli, S. H.; Mohajerzadeh, S.; Fathipour, M.; Hajihosseini, H. R. Fabrication of Ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering. J. Raman Spectrosc. 2019, 50, 1416–1428.

35

Hackett, L. P.; Goddard, L. L.; Liu, G. L. Plasmonic nanocone arrays for rapid and detailed cell lysate surface enhanced Raman spectroscopy analysis. Analyst 2017, 142, 4422–4430.

36

Zhao, W. N.; Wu, Y. Y.; Liu, X. G.; Xu, Y. B.; Wang, S. B.; Xu, Z. M. The fabrication of polymer-nanocone-based 3D Au nanoparticle array and its SERS performance. Appl. Phys. A 2017, 123, 45.

37

Wu, W.; Hu, M.; Ou, F. S.; Li, Z. Y.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 2010, 21, 255502.

38

Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Arrays of cone-shaped ZnO Nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater. 2012, 22, 218–224.

39

Xia, Y. Y.; Mo, X.; Ling, H. Q.; Hang, T.; Li, M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates. J. Electrochem. Soc. 2016, 163, D575−D578.

40

Gao, R. K.; Song, X. F.; Zhan, C. B.; Weng, C. G.; Cheng, S.; Guo, K.; Ma, N.; Chang, H. F.; Guo, Z. Y.; Luo, L. B. et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem. 2020, 314, 128081.

41

Hu, Y. S.; Jeon, J.; Seok, T. J.; Lee, S.; Hafner, J. H.; Drezek, R. A.; Choo, H. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: A practical approach to harness in-plane excitation. ACS Nano 2010, 4, 5721–5730.

42

Wang, Z.; Zheng, C. X.; Zhang, P.; Huang, Z. L.; Zhu, C. H.; Wang, X. J.; Hu, X. Y.; Yan, J. A split-type structure of Ag nanoparticles and Al2O3@Ag@Si nanocone arrays: An ingenious strategy for SERS-based detection. Nanoscale 2020, 12, 4359–4365.

43

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

44

Yang, Y.; Callahan, J. M.; Kim, T. H.; Brown, A. S.; Everitt, H. O. Ultraviolet nanoplasmonics: A demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett. 2013, 13, 2837–2841.

45

Im, H.; Lee, S. H.; Wittenberg, N. J.; Johnson T. W.; Lindquist, N. C.; Nagpal, P.; Norris, D. J.; Oh, S. H. Template-stripped smooth Ag nanohole arrays with silica shells for surface Plasmon resonance biosensing. ACS Nano 2011, 5, 6244–6253.

46

Lee, K. L.; Hsu, H. Y.; You, M. L.; Chang, C. C.; Pan, M. Y.; Shi, X.; Ueno, K.; Misawa, H.; Wei, P. K. Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures. Sci. Rep. 2017, 7, 44104.

47

Lassiter, J. B.; McGuire, F.; Mock, J. J.; Ciracì, C.; Hill, R. T.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 2013, 13, 5866–5872.

48

Zuo, Z. W.; Zhang, S.; Wang, Y. W.; Guo, Y. B.; Sun, L. Y.; Li, K. G.; Cui, G. L. Effective Plasmon coupling in conical cavities for sensitive surface enhanced Raman scattering with quantitative analysis ability. Nanoscale 2019, 11, 17913–17919.

49

Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745.

50

Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969.

51

Fortuni, B.; Inose, T.; Uezono, S.; Toyouchi, S.; Umemoto, K.; Sekine, S.; Fujita, Y.; Ricci, M.; Lu, G.; Masuhara, A. et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem. Commun. 2017, 53, 11298–11301.

52

Liu, S. S.; Xu, Z. M.; Sun, T. Y.; Zhao, W. N.; Wu, X. H.; Ma, Z. C.; Xu, H. F.; He, J.; Chen, C. H. Large-scale fabrication of polymer/Ag core–shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition. Appl. Phys. A 2014, 115, 979–984.

53

Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.

54

Martín, A.; Wang, J. J.; Iacopino, D. Flexible SERS active substrates from ordered vertical Au nanorod arrays. RSC Adv. 2014, 4, 20038– 20043.

55

Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann- Hogiu, S. Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep. 2013, 3, 3396.

56

Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58–64.

57

Zuo, Z. W.; Zhu, K.; Gu, C.; Wen, Y. B.; Cui, G. L.; Qu, J. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection. Appl. Surf. Sci. 2016, 379, 66–72.

58

Zhou, N. N.; Meng, G. W.; Huang, Z. L.; Ke, Y.; Zhou, Q. T.; Hu, X. Y. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 2016, 141, 5864–5869.

59

Wang Y. C.; DuChene J. S.; Huo, F. W.; Wei, W. D. An in situ approach for facile fabrication of robust and scalable SERS substrates. Nanoscale 2014, 6, 7232–7236.

60

Gao, X. Y.; Feng, H. L.; Ma, J. M.; Zhang, Z. Y.; Lu, J. X.; Chen, Y. S.; Yang, S. E.; Gu, J. H. Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model. Physica B Condens Matter 2010, 405, 1922–1926.

61

Tsui, K. H.; Lin, Q. F.; Chou, H. T.; Zhang, Q. P.; Fu, H. Y.; Qi, P. F.; Fan, Z. Y. Low-cost, flexible, and self-cleaning 3D nanocone anti- reflection films for high-efficiency photovoltaics. Adv. Mater. 2014, 26, 2805–2811.

Nano Research
Pages 317-325
Cite this article:
Zuo Z, Sun L, Guo Y, et al. Multiple plasmon couplings in 3D hybrid Au-nanoparticles- decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering. Nano Research, 2022, 15(1): 317-325. https://doi.org/10.1007/s12274-021-3477-x
Topics:

991

Views

35

Crossref

29

Web of Science

31

Scopus

0

CSCD

Altmetrics

Received: 20 December 2020
Revised: 25 March 2021
Accepted: 27 March 2021
Published: 20 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return