AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Applications of single-atom catalysts

Qiaoqiao ZhangJingqi Guan
Institute of Physical ChemistryCollege of Chemistry, Jilin UniversityChangchun130012China
Show Author Information

Graphical Abstract

Abstract

Owing to unsaturated coordination environment, quantum size effect and metal-support interaction, single- or dual-atom metal sites, such as Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Ag, Sn, Ir, Pt, Au, Bi, and Er coordinated with nonmetallic elements such as O, N, P, and S, exhibit different electronic configurations, which endow them with high catalytic performances in multiple redox reactions and versatile applications in organic synthesis, environmental remediation, energy conversion, and biomedicine. Despite intense research, the relation of structure-activity for single-atom catalysts (SACs) still bedazzles researchers, since diversified configurations of active sites would bring about difficulty in structural identification and theoretical simulations. Here, recent results on the applications of SACs are reviewed with an emphasis on identifying the active sites and discussing the relation between structure and property.

References

1

Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656-665.

2

Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107-119.

3

Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

4

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683-3704.

5

Huang, C. H.; Dong, J. C.; Sun, W. M.; Xue, Z. J.; Ma, J.; Zheng, L. R.; Liu, C.; Li, X.; Zhou, K.; Qiao, X. Z. et al. Coordination mode engineering in stacked-nanosheet metal-organic frameworks to enhance catalytic reactivity and structural robustness. Nat. Commun. 2019, 10, 2779.

6

Sudarsanam, P.; Zhong, R. Y.; van den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349-8402.

7

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.

8

Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651-661.

9

Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 2017, 12, 378-386.

10

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

11

Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem. , Int. Ed. 2016, 55, 2101- 2106.

12

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem. , Int. Ed. 2020, 59, 2565-2576.

13

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.

14

Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786-804.

15

Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 1995, 378, 159-162.

16

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

17

Chen, Z. W.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492-3515.

18

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34-59.

19

Li, C. Single Co atom catalyst stabilized in C/N containing matrix. Chin. J. Catal. 2016, 37, 1443-1445.

20

Wang, B. W.; Wang, X. X.; Zou, J. X.; Yan, Y. C.; Xie, S. H.; Hu, G. Z.; Li, Y. G.; Dong, A. G. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 2017, 17, 2003-2009.

21

Xiong, Y.; Wang, S. B.; Chen, W. X.; Zhang, J.; Li, Q. H.; Hu, H. S.; Zheng, L. R.; Yan, W. S.; Gu, L.; Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

22

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653-672.

23

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single- atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231- 2259.

24

Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288-1301.

25

Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

26

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2020, 33, 2000381.

27

Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793- 8814.

28

Liu, J. Y. Single-atom catalysis for a sustainable and greener future. Curr. Opin. Green Sust. Chem. 2020, 22, 54-64.

29

Gao, Z. Y.; Xu, S. P.; Li, L. L.; Yan, G.; Yang, W. J.; Wu, C. C.; Gates, I. D. On the adsorption of elemental mercury on single-atom TM (TM = V, Cr, Mn, Co) decorated graphene substrates. Appl. Surf. Sci. 2020, 516, 146037.

30

Wang, Q. S.; Zhang, D. F.; Chen, Y.; Fu, W. F.; Lv, X. J. Single- atom catalysts for photocatalytic reactions. ACS Sustainable Chem. Eng. 2019, 7, 6430-6443.

31

Yilmaz, G.; Peh, S. B.; Zhao, D.; Ho, G. W. Atomic- and molecular- level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv. Sci. 2019, 6, 1901129.

32

Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

33

Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.

34

Zhang, W. M.; Liu, Y. Q.; Zhang, L. P.; Chen, J. Recent advances in isolated single-atom catalysts for zinc air batteries: A focus review. Nanomaterials 2019, 9, 1402.

35

Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Guan, J. Q. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B 2019, 257, 117930.

36

Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Zhang, Q. Q.; Guan, J. Q. Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 2019, 9, 9897-9904.

37

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem. , Int. Ed. 2020, 59, 20794-20812.

38

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.

39

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y.; M. Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998-1003.

40

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

41

Thomas, J. M. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). Phys. Chem. Chem. Phys. 2014, 16, 7647-7661.

42

Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673-689.

43

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez- Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703-11809.

44

Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

45

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 13944-13960.

46

Moliner, M.; Gabay, J. E.; Kliewer, C. E.; Carr, R. T.; Guzman, J.; Casty, G. L.; Serna, P.; Corma, A. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 2016, 138, 15743-15750.

47

Wei, H. H.; Wu, H. B.; Huang, K.; Ge, B. H.; Ma, J. Y.; Lang, J. L.; Zu, D.; Lei, M.; Yao, Y. G.; Guo, W. et al. Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem. Sci. 2019, 10, 2830-2836.

48

Wei, H. H.; Huang, K.; Wang, D.; Zhang, R. Y.; Ge, B. H.; Ma, J. Y.; Wen, B.; Zhang, S.; Li, Q. Y.; Lei, M. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 2017, 8, 1490.

49

Lu, J. L.; Elam, J. W.; Stair, P. C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 2013, 46, 1806-1815.

50

Detavernier, C.; Dendooven, J.; Pulinthanathu Sree, S.; Ludwig, K. F.; Martens, J. A. Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 2011, 40, 5242-5253.

51

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209- 1212.

52

Lucci, F. R.; Darby, M. T.; Mattera, M. F. G.; Ivimey, C. J.; Therrien, A. J.; Michaelides, A.; Stamatakis, M.; Sykes, E. C. H. Controlling hydrogen activation, spillover, and desorption with Pd-Au single- atom alloys. J. Phys. Chem. Lett. 2016, 7, 480-485.

53

Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke- resistant catalysts for efficient C-H activation. Nat. Chem. 2018, 10, 325-332.

54

Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Selective hydrogenation of 1, 3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.

55

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-12088.

56

Ge, J. J.; Li, Z. J.; Hong, X.; Li, Y. D. Surface atomic regulation of core-shell noble metal catalysts. Chem. -Eur. J. 2019, 25, 5113- 5127.

57

Zhou, M.; Dick, J. E.; Bard, A. J. Electrodeposition of isolated platinum atoms and clusters on bismuth—characterization and electrocatalysis. J. Am. Chem. Soc. 2017, 139, 17677-17682.

58

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.

59

Xuan, N. N.; Chen, J. H.; Shi, J. J.; Yue, Y. W.; Zhuang, P. Y.; Ba, K.; Sun, Y. Y.; Shen, J. F.; Liu, Y. Y.; Ge, B. H. et al. Single-atom electroplating on two dimensional materials. Chem. Mater. 2019, 31, 429-435.

60

Wang, D. W.; Li, Q.; Han, C.; Xing, Z. C.; Yang, X. R. Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B 2019, 249, 91-97.

61

Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

62

Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

63

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215-2264.

64

Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616-619.

65

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

66

Chen, X. Q.; Yu, L.; Wang, S.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353-358.

67

Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938-996.

68

Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594- 11597.

69

Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core-shell strategy to metal single- atom materials. J. Am. Chem. Soc. 2017, 139, 10976-10979.

70

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. , Int. Ed. 2016, 55, 10800-10805.

71

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419-9422.

72

Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795-9798.

73

Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Single-atom catalysts: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1870088.

74

Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

75

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

76

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348-2352.

77

Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691-698.

78

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856-861.

79

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285-2288.

80

MacLaren, I.; Ramasse, Q. M. Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Int. Mater. Rev. 2014, 59, 115-131.

81

Liu, J. Y. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: Probing the catalytically active centers. Chin. J. Catal. 2017, 38, 1460-1472.

82

Oxley, M. P.; Lupini, A. R.; Pennycook, S. J. Ultra-high resolution electron microscopy. Rep. Prog. Phys. 2016, 80, 026101.

83

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

84

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890-2923.

85

Zhang, W. P.; Xu, S. T.; Han, X. W.; Bao, X. H. In situ solid-state NMR for heterogeneous catalysis: A joint experimental and theoretical approach. Chem. Soc. Rev. 2012, 41, 192-210.

86

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790-10798.

87

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem. , Int. Ed. 2018, 57, 1944-1948.

88

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

89

Thirumalai, H.; Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 2018, 61, 462-474.

90

Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033-1039.

91

Peng, B. S.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837-2847.

92

Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008318.

93

Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 2003, 36, 20-30.

94

Yan, H.; Zhao, X. X.; Guo, N.; Lyu, Z.; Du, Y. H.; Xi, S. B.; Guo, R.; Chen, C.; Chen, Z. X.; Liu, W. et al. Atomic engineering of high- density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 2018, 9, 3197.

95

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

96

Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. , Int. Ed. 2016, 55, 8319-8323.

97

Wei, H. S.; Ren, Y. J.; Wang, A. Q.; Liu, X. Y.; Liu, X.; Zhang, L. L.; Miao, S.; Li, L.; Liu, J. Y.; Wang, J. H. et al. Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeOx catalysts. Chem. Sci. 2017, 8, 5126-5131.

98

Yan, X. L.; Duan, P.; Zhang, F. W.; Li, H.; Zhang, H. X.; Zhao, M.; Zhang, X. M.; Xu, B. S.; Pennycook, S. J.; Guo, J. J. Stable single- atom platinum catalyst trapped in carbon onion graphitic shells for improved chemoselective hydrogenation of nitroarenes. Carbon 2019, 143, 378-384.

99

Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20-28.

100

Merino, E. Synthesis of azobenzenes: The coloured pieces of molecular materials. Chem. Soc. Rev. 2011, 40, 3835-3853.

101

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537-543.

102

Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758- 5764.

103

Wang, L.; Guan, E. J.; Zhang, J.; Yang, J. H.; Zhu, Y. H.; Han, Y.; Yang, M.; Cen, C.; Fu, G.; Gates, B. C. et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat. Commun. 2018, 9, 1362.

104

Makosch, M.; Sá, J.; Kartusch, C.; Richner, G.; van Bokhoven, J. A.; Hungerbühler, K. Hydrogenation of nitrobenzene over Au/MeOx catalysts—A matter of the support. ChemCatChem 2012, 4, 59-63.

105

Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-10487.

106

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. , Int. Ed. 2015, 54, 11265-11269.

107

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-800.

108

Wang, J.; Zhao, X. C.; Lei, N.; Li, L.; Zhang, L. L.; Xu, S. T.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Hydrogenolysis of glycerol to 1, 3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst. ChemSusChem 2016, 9, 784-790.

109

Zhao, X. C.; Wang, J.; Yang, M.; Lei, N.; Li, L.; Hou, B. L.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Selective hydrogenolysis of glycerol to 1, 3-propanediol: Manipulating the frustrated lewis pairs by introducing gold to Pt/WOx. ChemSusChem 2017, 10, 819-824.

110

Stephan, D. W. Frustrated lewis pairs: From concept to catalysis. Acc. Chem. Res. 2015, 48, 306-316.

111

Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703-709.

112

Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810-816.

113

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082- 3087.

114

Bao, X. H. Preface: Catalysis—key to a sustainable future. Natl. Sci. Rev. 2015, 2, 137.

115

Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. , Int. Ed. 2007, 46, 8593-8596.

116

Xie, S. H.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2012, 2, 1519-1523.

117

Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem. , Int. Ed. 2018, 57, 7795-7799.

118

Xie, J. H.; Yin, K. H.; Serov, A.; Artyushkova, K.; Pham, H. N.; Sang, X. H.; Unocic, R. R.; Atanassov, P.; Datye, A. K.; Davis, R. J. Selective aerobic oxidation of alcohols over atomically-dispersed non-precious metal catalysts. ChemSusChem 2017, 10, 359-362.

119

Li, M.; Wu, S. J.; Yang, X. Y.; Hu, J.; Peng, L.; Bai, L.; Huo, Q. S.; Guan, J. Q. Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. Appl. Catal. A 2017, 543, 61-66.

120

Huang, K. T.; Fu, H. Q.; Shi, W.; Wang, H. J.; Cao, Y. H.; Yang, G. X.; Peng, F.; Wang, Q.; Liu, Z. G.; Zhang, B. S. et al. Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C. J. Catal. 2019, 377, 283-292.

121

Hu, P. P.; Huang, Z. W.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y. X.; Gu, X.; Tang, X. Electronic metal-support interactions in single-atom catalysts. Angew. Chem. , Int. Ed. 2014, 53, 3418-3421.

122

He, W. L.; Yang, X. L.; Zhao, M.; Wu, C. D. Suspending ionic single- atom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature. J. Catal. 2018, 358, 43-49.

123

Song, G. Y.; Wang, F.; Li, X. W. C-C, C-O and C-N bond formation via rhodium(Ⅲ)-catalyzed oxidative C-H activation. Chem. Soc. Rev. 2012, 41, 3651-3678.

124
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: 10.1007/s12274-020-3244-4.https://doi.org/10.1007/s12274-020-3244-4
125

Lee, M.; Ko, S.; Chang, S. Highly selective and practical hydrolytic oxidation of organosilanes to silanols catalyzed by a ruthenium complex. J. Am. Chem. Soc. 2000, 122, 12011-12012.

126

Mitsudome, T.; Arita, S.; Mori, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported silver-nanoparticle-catalyzed highly efficient aqueous oxidation of phenylsilanes to silanols. Angew. Chem. , Int. Ed. 2008, 47, 7938-7940.

127

Chandrasekhar, V.; Boomishankar, R.; Nagendran, S. Recent developments in the synthesis and structure of organosilanols. Chem. Rev. 2004, 104, 5847-5910.

128

Chen, Z.; Zhang, Q.; Chen, W. X.; Dong, J. C.; Yao, H. R.; Zhang, X. B.; Tong, X. J.; Wang, D. S.; Peng, Q.; Chen, C. et al. Single-site AuI catalyst for silane oxidation with water. Adv. Mater. 2018, 30, 1704720.

129

Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184-3209.

130

Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947-951.

131

Zhang, X. Y.; Sun, Z. C.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y. T.; Tao, F. F. C-C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 2018, 140, 954-962.

132

Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702-707.

133

Liu, Y. Q.; Zhou, Y.; Li, J.; Wang, Q.; Qin, Q.; Zhang, W.; Asakura, H.; Yan, N.; Wang, J. Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Appl. Catal. B 2017, 209, 679-688.

134

Zhang, L. L.; Wang, A. Q.; Miller, J. T.; Liu, X. Y.; Yang, X. F.; Wang, W. T.; Li, L.; Huang, Y. Q.; Mou, C. Y.; Zhang, T. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water. ACS Catal. 2014, 4, 1546- 1553.

135

Zhang, L. L.; Wang, A. Q.; Wang, W. T.; Huang, Y. Q.; Liu, X. Y.; Miao, S.; Liu, J. Y.; Zhang, T. Co-N-C catalyst for C-C coupling Reactions: On the catalytic performance and active sites. ACS Catal. 2015, 5, 6563-6572.

136

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-1264.

137

Cheng, Y.; Yang, S. Z.; Jiang, S. P.; Wang, S. Y. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods 2019, 3, 1800440.

138

Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.

139

Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609-4624.

140

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934-944.

141

Tuo, J. Q.; Lin, Y. X.; Zhu, Y. H.; Jiang, H. L.; Li, Y. H.; Cheng, L.; Pang, R. C.; Shen, J. H.; Song, L.; Li, C. Z. Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B 2020, 272, 118960.

142

Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116-3122.

143

Hou, Y.; Liang, Y. L.; Shi, P. C.; Huang, Y. B.; Cao, R. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B 2020, 271, 118929.

144

Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B 2020, 268, 118747.

145

Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044-1053.

146

Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

147

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563-12567.

148

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. , Int. Ed. 2020, 59, 10651-10657.

149

Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. , Int. Ed. 2016, 55, 14310-14314.

150

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292-6297.

151

Chao, C. Y. H. Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ. 2001, 36, 999-1007.

152

Fujiwara, K.; Pratsinis, S. E. Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Appl. Catal. B 2018, 226, 127-134.

153

Ou, M.; Wan, S. P.; Zhong, Q.; Zhang, S. L.; Wang, Y. N. Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hydrogen Energy 2017, 42, 27043-27054.

154

Wu, Q.; Wei, W.; Lv, X. S.; Wang, Y. Y.; Huang, B. B.; Dai, Y. Cu@g-C3N4: An efficient single-atom electrocatalyst for NO electrochemical reduction with suppressed hydrogen evolution. J. Phys. Chem. C 2019, 123, 31043-31049.

155

Tang, Y. A.; Chen, W. G.; Li, C. G.; Pan, L. J.; Dai, X. Q.; Ma, D. W. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules. Appl. Surf. Sci. 2015, 342, 191-199.

156

Gao, Z. Y.; Yang, W. J.; Ding, X. L.; Lv, G.; Yan, W. P. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S). Appl. Surf. Sci. 2018, 436, 585-595.

157

Li, N.; Song, X. Z.; Wang, L.; Geng, X. L.; Wang, H.; Tang, H. Y.; Bian, Z. Y. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds. ACS Appl. Mater. Interfaces 2020, 12, 24019-24029.

158

Wang, Y. B.; Zhao, X.; Cao, D.; Wang, Y.; Zhu, Y. F. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B 2017, 211, 79-88.

159

Wang, F. L.; Wang, Y. F.; Li, Y. Y.; Cui, X. H.; Zhang, Q. X.; Xie, Z. J.; Liu, H. J.; Feng, Y. P.; Lv, W. Y.; Liu, G. G. The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate. Dalton Trans. 2018, 47, 6924-6933.

160

An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High- density ultra-small clusters and single-atom fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced Oxidation processes. ACS Nano 2018, 12, 9441-9450.

161

Yao, Y. J.; Yin, H. Y.; Gao, M. X.; Hu, Y.; Hu, H. H.; Yu, M. J.; Wang, S. B. Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants. Chem. Eng. Sci. 2019, 209, 115211.

162

Li, Y.; Yang, T.; Qiu, S. H.; Lin, W. Q.; Yan, J. T.; Fan, S. S.; Zhou, Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem. Eng. J. 2020, 389, 124382.

163

Chen, M. T.; Wang, N.; Zhu, L. H. Single-atom dispersed Co-N-C: A novel adsorption-catalysis bifunctional material for rapid removing bisphenol A. Catal. Today 2020, 348, 187-193.

164

Xu, H. D.; Jiang, N.; Wang, D.; Wang, L. H.; Song, Y. F.; Chen, Z. Q.; Ma, J.; Zhang, T. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways. Appl. Catal. B 2020, 263, 118350.

165

Zhang, Y.; Liu, Y. X.; Xie, S. H.; Huang, H. B.; Guo, G. S.; Dai, H. X.; Deng, J. G. Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environ. Int. 2019, 128, 335-342.

166

Zhang, H. Y.; Sui, S. H.; Zheng, X. M.; Cao, R. R.; Zhang, P. Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B 2019, 257, 117878.

167

Xu, T. Z.; Zheng, H.; Zhang, P. Y. Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene. J. Hazard. Mater. 2020, 388, 121746.

168

Wang, Z. W.; Yang, H. G.; Liu, R.; Xie, S. H.; Liu, Y. X.; Dai, H. X.; Huang, H. B.; Deng, J. G. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258.

169

Wen, X. D.; Zhang, Q. Q.; Guan, J. Q. Applications of metal- organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 2020, 409, 213214.

170

Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938.

171

Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2019, 58, 1163-1167.

172

Liu, Q. T.; Li, Y. C.; Zheng, L. R.; Shang, J. X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv. Energy Mater. 2020, 10, 2000689.

173

Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.

174

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937-942.

175

He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250-260.

176

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem. , Int. Ed. 2021, 60, 3212-3221.

177

Bouwkamp-Wijnoltz, A. L.; Visscher, W.; van Veen, J. A. R.; Boellaard, E.; van der Kraan, A. M.; Tang, S. C. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: An in situ mössbauer study. J. Phys. Chem. B 2002, 106, 12993-13001.

178

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

179

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N- coordinated dual-metal Sites: A stable and active pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.

180

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. , Int. Ed. 2019, 58, 2622-2626.

181

Zang, J.; Wang, F. T.; Cheng, Q. Q.; Wang, G. L.; Ma, L. S.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Xie, D. Q.; Yang, H. Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 2020, 8, 3686-3691.

182

Zhou, Y. D.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P. W.; Chen, R. J.; Sun, S. R. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 2020, 11, 1404-1410.

183

Zhang, C.; Sha, J.; Fei, H.; Liu, M.; Yazdi, S.; Zhang, J.; Zhong, Q.; Zou, X.; Zhao, N.; Yu, H. et al. Single-Atomic ruthenium catalytic site on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930‒6941.

184

Zhang, Q. Q.; Duan, Z. Y.; Wang, Y.; Li, L. N.; Nan, B.; Guan, J. Q. Atomically dispersed iridium catalysts for multifunctional electrocatalysis. J. Mater. Chem. A 2020, 8, 19665-19673.

185

Wan, G.; Yu, P. F.; Chen, H. R.; Wen, J. G.; Sun, C. J.; Zhou, H.; Zhang, N.; Li, Q. R.; Zhao, W. P.; Xie, B. et al. Engineering single- atom cobalt catalysts toward improved electrocatalysis. Small 2018, 14, 1704319.

186

Wen, X. D.; Bai, L.; Li, M.; Guan, J. Q. Atomically dispersed cobalt- and nitrogen-codoped graphene toward bifunctional catalysis of oxygen reduction and hydrogen evolution reactions. ACS Sustainable Chem. Eng. 2019, 7, 9249-9256.

187

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935-945.

188

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870-877.

189

Zhang, Q. Q.; Guan, J. Q. Mono-/multinuclear water oxidation catalysts. ChemSusChem 2019, 12, 3209-3235.

190

Luo, F.; Hu, H.; Zhao, X.; Yang, Z. H.; Zhang, Q.; Xu, J. X.; Kaneko, T.; Yoshida, Y.; Zhu, C. Z.; Cai, W. W. Robust and stable acidic overall water splitting on Ir single atoms. Nano Lett. 2020, 20, 2120-2128.

191

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

192

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304-313.

193

Lei, C. J.; Chen, H. Q.; Cao, J. H.; Yang, J.; Qiu, M.; Xia, Y.; Yuan, C.; Yang, B.; Li, Z. J.; Zhang, X. W. et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 2018, 8, 1801912.

194

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed mo supported on metallic Co9S8 nanoflakes as an advanced noble- metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

195

Qiu, Y.; Peng, X. Y.; Lü, F.; Mi, Y. Y.; Zhuo, L. C.; Ren, J. Q.; Liu, X. J.; Luo, J. Single-atom catalysts for the electrocatalytic reduction of nitrogen to ammonia under ambient conditions. Chem. Asian J. 2019, 14, 2770-2779.

196

Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials. Adv. Theor. Simul. 2018, 1, 1800018.

197

Ling, C. Y.; Bai, X. W.; Ouyang, Y. X.; Du, A. J.; Wang, J. L. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 2018, 122, 16842-16847.

198

Li, X. F.; Li, Q. K.; Cheng, J.; Liu, L. L.; Yan, Q.; Wu, Y. C.; Zhang, X. H.; Wang, Z. Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706-8709.

199

Huang, Y.; Yang, T. T.; Yang, L.; Liu, R.; Zhang, G. Z.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. B. Graphene-boron nitride hybrid- supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173-15180.

200

Zheng, X. N.; Yao, Y.; Wang, Y.; Liu, Y. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: A first-principles study. Nanoscale 2020, 12, 9696-9707.

201

Ou, P. F.; Zhou, X.; Meng, F. C.; Chen, C.; Chen, Y. Q.; Song, J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale 2019, 11, 13600-13611.

202

Zhao, J.; Zhao, J. X.; Cai, Q. H. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248-9255.

203

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

204

Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246-1253.

205

Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

206

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3·mgcat-1·h-1 for N2 electrochemical reduction over Ru single- atom catalysts. Adv. Mater. 2018, 30, 1803498.

207

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204-214.

208

Qiu, J. Z.; Hu, J. B.; Lan, J. G.; Wang, L. F.; Fu, G. Y.; Xiao, R. J.; Ge, B. H.; Jiang, J. X. Pure siliceous zeolite-supported Ru single- atom active sites for ammonia synthesis. Chem. Mater. 2019, 31, 9413-9421.

209

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

210

Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420-427.

211

Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. , Int. Ed. 2020, 59, 10888-10893.

212

Zang, W. J.; Yang, T.; Zou, H. Y.; Xi, S. B.; Zhang, H.; Liu, X. M.; Kou, Z. K.; Du, Y. H.; Feng, Y. P.; Shen, L. et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 2019, 9, 10166-10173.

213

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. , Int. Ed. 2019, 58, 2321-2325.

214

Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon- dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379-387.

215

He, F.; Mi, L.; Shen, Y. F.; Mori, T.; Liu, S. Q.; Zhang, Y. J. Fe-N-C artificial enzyme: Activation of oxygen for dehydrogenation and monoxygenation of organic substrates under mild condition and cancer therapeutic application. ACS Appl. Mater. Interfaces 2018, 10, 35327-35333.

216

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643-2653.

217

Wang, L.; Qu, X. Z.; Zhao, Y. X.; Weng, Y. Z. W.; Waterhouse, G. I. N.; Yan, H.; Guan, S. Y.; Zhou, S. Y. Exploiting single atom Iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl. Mater. Interfaces 2019, 11, 35228-35237.

218

Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Bioinspired copper single- atom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

219

Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.

220

Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

221

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single- atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

222

Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B 2020, 305, 127511.

223

Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

224

Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373-3379.

225

Wen, W.; Yan, X.; Zhu, C. Z.; Du, D.; Lin, Y. H. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138-156.

226

Yao, L. L.; Gao, S. J.; Liu, S.; Bi, Y. L.; Wang, R. R.; Qu, H.; Wu, Y. E.; Mao, Y.; Zheng, L. Single-atom enzyme-functionalized solution- gated graphene transistor for real-time detection of mercury Ion. ACS Appl. Mater. Interfaces 2020, 12, 6268-6275.

227

Hou, H. F.; Mao, J. J.; Han, Y. H.; Wu, F.; Zhang, M. N.; Wang, D. S.; Mao, L. Q.; Li, Y. Single-atom electrocatalysis: A new approach to in vivo electrochemical biosensing. Sci. China Chem. 2019, 62, 1720-1724.

228

Gu, W. L.; Wang, H. J.; Jiao, L.; Wu, Y.; Chen, Y. X.; Hu, L. Y.; Gong, J. M.; Du, D.; Zhu, C. Z. Single-atom Iron boosts electrochemiluminescence. Angew. Chem. , Int. Ed. 2020, 59, 3534-3538.

Nano Research
Pages 38-70
Cite this article:
Zhang Q, Guan J. Applications of single-atom catalysts. Nano Research, 2022, 15(1): 38-70. https://doi.org/10.1007/s12274-021-3479-8
Topics:
Part of a topical collection:

1508

Views

136

Crossref

132

Web of Science

126

Scopus

0

CSCD

Altmetrics

Received: 11 February 2021
Revised: 27 March 2021
Accepted: 29 March 2021
Published: 19 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return