Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
ROS-based tumor therapy based on nanocatalytic medicine has recently been proposed for its tumor-specificity. However, a safe and highly efficient strategy towards getting high enough ROS to kill the hypoxic cancer cells is still a great challenge. Herein, we report a simple pH/H2O2-activatable, O2-evolving, and ROS regulating doxorubicin (DOX) and indocyanine green (ICG) co-loading PEGylated polyaniline (PANI) coated CeOx@polyacrylic acid (PAA) nanoclusters for highly selective and optimized cancer combination treatment. It can selectively and greatly enhance intracellular O2 and ROS levels in tumor region, which depends on two-step catalytic properties of nanoceria (Ce4+/Ce3+ = 3.46, neutral surface charge, mostly localize into the cytoplasm, pH 7.4–6.5, catalase-like catalytic agents convert to Ce4+/Ce3+ = 0.58, negative surface charge, mostly localize into the lysosomes, pH 5–4, oxidase-like catalytic agents, triggered by near infrared (NIR) laser irradiation). Furthermore, the protective effect of polyethylene glycol (PEG), PANI, and PAA ensure that the nanoceria can only play the role of catalase under the irradiation of NIR light arrived at the tumor area. Moreover, loading of nanoceria and ICG onto PANI greatly enhanced photo thermal effect of nanoparticles (NPs), which is useful for killing cancer cells by relieving hypoxia and promoting cross-membrane drug delivery to further enhance photodynamic therapy and chemotherapy efficiency. The chemo-photo combination therapies fantastically inhibited tumor growth and prevented tumor recurrence in vivo, suggesting a smart nanotheranostic system to achieve more precise and effective therapies in O2-deprived tumor tissue.
Vicent, M. J.; Greco, F.; Nicholson, R. I.; Paul, A.; Griffiths, P. C.; Duncan, R. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew. Chem. , Int. Ed. 2005, 44, 4061–4066.
Lane, D. Designer combination therapy for cancer. Nat. Biotechnol. 2006, 24, 163–164.
Zhang, L.; Su, H. L.; Wang, H. L.; Li, Q.; Li, X.; Zhou, C. Q.; Xu, J.; Chai, Y. M.; Liang, X. W.; Xiong, L. Q. et al. Tumor chemo- radiotherapy with rod-shaped and spherical gold nano probes: Shape and active targeting both matter. Theranostics 2019, 9, 1893–1908.
Wang, Y.; Wei, G. Q.; Zhang, X. B.; Xu, F. N.; Xiong, X.; Zhou, S. B. A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater. 2017, 29, 1605357.
Ji, C. D.; Gao, Q.; Dong, X. H.; Yin, W. Y.; Gu, Z. J.; Gan, Z. H.; Zhao, Y. L.; Yin, M. Z. A size-reducible nanodrug with an aggregation- enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem. , Int. Ed. 2018, 57, 11384–11388.
Chen, W. H.; Liu, J. H.; Wang, Y.; Jiang, C. H.; Yu, B.; Sun, Z.; Lu, L. H. A C5N2 nanoparticle based direct nucleus delivery platform for synergistic cancer therapy. Angew. Chem. , Int. Ed. 2019, 58, 6290–6294.
Meng, Z. Q.; Zhou, X. F.; Xu, J.; Han, X.; Dong, Z. L.; Wang, H. R.; Zhang, Y. J.; She, J. L.; Xu, L. G.; Wang, C. et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 2019, 31, 1900927.
Chu, C. C.; Ren, E.; Zhang, Y. M.; Yu, J. W.; Lin, H. R.; Pang, X.; Zhang, Y.; Liu, H.; Qin, Z. N.; Cheng, Y. et al. Zinc(II)-dipicolylamine coordination nanotheranostics: Toward synergistic nanomedicine by combined photo/gene therapy. Angew. Chem. , Int. Ed. 2019, 58, 269–272.
Yang, Z.; Fan, W. P.; Zou, J. H.; Tang, W.; Li, L.; He, L. C.; Shen, Z. Y.; Wang, Z. T.; Jacobson, O.; Aronova, M. A. et al. Precision cancer theranostic platform by in situ polymerization in perylene diimide- hybridized hollow mesoporous organosilica nanoparticles. J. Am. Chem. Soc. 2019, 141, 14687–14698.
Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet- based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
Jain, R. K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005, 307, 58–62.
Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47.
Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-Mno2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.
Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2- evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.
Jakobsson, P. J.; Thorén, S.; Morgenstern, R.; Samuelsson, B. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. USA 1999, 96, 7220–7225.
Tannock, I. F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989, 49, 4373–4384.
Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.
Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.
Ni, X.; Zhang, X. Y.; Duan, X. C.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image- guided cancer surgery. Nano Lett. 2019, 19, 318–330.
Chen, C.; Ni, X.; Tian, H. W.; Liu, Q.; Guo, D. S.; Ding, D. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem. , Int. Ed. 2020, 59, 10008–10012.
Feng, G. X.; Zhang, G. Q.; Ding, D. Design of superior phototheranostic agents guided by jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234.
Li, H.; Liu, C.; Zeng, Y. P.; Hao, Y. H.; Huang, J. W.; Yang, Z. Y.; Li, R. Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Appl. Mater. Interfaces 2016, 8, 31510–31523.
Hijaz, M.; Das, S.; Mert, I.; Gupta, A.; Al-Wahab, Z.; Tebbe, C.; Dar, S.; Chhina, J.; Giri, S.; Munkarah, A. et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer 2016, 16, 220.
Gao, R. J.; Mitra, R. N.; Zheng, M.; Wang, K.; Dahringer, J. C.; Han, Z. C. Developing nanoceria-based pH-dependent cancer-directed drug delivery system for retinoblastoma. Adv. Funct. Mater. 2018, 28, 1806248.
Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R. Electron localization determines defect formation on ceria substrates. Science 2005, 309, 752–755.
Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.
Karakoti, A. S.; Monteiro-Riviere, N. A.; Aggarwal, R.; Davis, J. P.; Narayan, R. J.; Self, W. T.; McGinnis, J.; Seal, S. Nanoceria as antioxidant: Synthesis and biomedical applications. JOM 2008, 60, 33–37.
Zhu, H. J.; Fang, Y.; Miao, Q. Q.; Qi, X. Y.; Ding, D.; Chen, P.; Pu, K. Y. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 2017, 11, 8998–9009.
Asati, A.; Santra, S.; Kaittanis, C.; Perez, J. M. Surface-charge- dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4, 5321–5331.
Xia, B.; Wang, B.; Shi, J. S.; Zhang, Y.; Zhang, Q.; Chen, Z. Y.; Li, J. C. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer. Acta Biomater. 2017, 51, 197–208.
Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.
Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.
Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411– 1420.
Nelson, B. C.; Johnson, M. E.; Walker, M. L.; Riley, K. R.; Sims, C. M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016, 5, 15.
Kuo, W. S.; Chang, Y. T.; Cho, K. C.; Chiu, K. C.; Lien, C. H.; Yeh, C. S.; Chen, S. J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33, 3270–3278.
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G. L.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005, 436, 568–572.
Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase- like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. , Int. Ed. 2009, 48, 2308–2312.
Ju, E. G.; Dong, K.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation. Adv. Funct. Mater. 2015, 25, 1574–1580.
Tan, X. X.; Wang, J. P.; Pang, X. J.; Liu, L.; Sun, Q.; You, Q.; Tan, F. P.; Li, N. Indocyanine green-loaded silver nanoparticle@polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light-triggered photothermal and photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 34991–35003.
Sigler, P. B.; Masters, B. J. The hydrogen peroxide-induced Ce*(III)- Ce(IV) exchange system. J. Am. Chem. Soc. 1957, 79, 6353–6357.
Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.
Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.
Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782–6795.
Lee, H.; Lee, E.; Kim, D. K.; Jang, N. K.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc. 2006, 128, 7383–7389.
Wöhrle, D.; Shopova, M.; Müller, S.; Milev, A. D.; Mantareva, V. N.; Krastev, K. K. Liposome-delivered Zn(II)-2, 3-naphthalocyanines as potential sensitizers for PDT: Synthesis, photochemical, pharmacokinetic and phototherapeutic studies. J. Photochem. Photobiol. B 1993, 21, 155–165.
Vlkolinský, R.; Štolc, S. Effects of stobadine, melatonin, and other antioxidants on hypoxia/reoxygenation-induced synaptic transmission failure in rat hippocampal slices. Brain Res. 1999, 850, 118–126.