AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large area van der Waals epitaxy of II-VI CdSe thin films for flexible optoelectronics and full-color imaging

Wenwu Pan1,§Junliang Liu1,§Zekai Zhang1Renjie Gu1Alexandra Suvorova2Sarah Gain2Han Wang1Ziyuan Li3Lan Fu3Lorenzo Faraone1Wen Lei1( )
Department of Electrical Electronic and Computer Engineering The University of Western Australia 35 Stirling HighwayCrawley 6009 Australia
Centre for Microscopy Characterisation and Analysis The University of Western Australia 35 Stirling HighwayPerth 6009 Australia
Department of Electronic Materials Engineering Research School of Physics The Australian National UniversityCanberra ACT 2601 Australia

§ Wenwu Pan and Junliang Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The demand for future semiconductor devices with enhanced performance and lower cost has driven the development of epitaxial growth of high quality, free-standing semiconductor thin film materials without the requirement of lattice matching to the substrate, as well as their transfer to other substrates and associated device processing technology. This work presents a study on the van der Waals epitaxy based molecular beam epitaxy of CdSe thin films on two-dimensional layered mica substrates, as well as related etch-free layer transfer technology of large area, free-standing layers and their application in flexible photodetectors for full-color imaging. The photoconductor detectors based on these flexible CdSe thin films demonstrate excellent device performance at room temperature in terms of responsivity (0.2 A·W–1) and detectivity (1.5 × 1012 Jones), leading to excellent full-color imaging quality in the visible spectral range. An etch-free and damage-free layer transfer method has been developed for transferring these CdSe thin films from mica to other substrate for further device processing and integration. These results demonstrate the feasibility of van der Waals epitaxy method for growing high quality, large area, and free-standing epitaxial layers without the requirement for lattice matching to substrate for applications in low-cost flexible and/or monolithic integrated optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3485_MOESM1_ESM.pdf (1.7 MB)

References

1

Kum, H.; Lee, D.; Kong, W.; Kim, H.; Park, Y.; Kim, Y.; Baek, Y.; Bae, S. H.; Lee, K.; Kim, J. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2019, 2, 439–450.

2

Xiang, L.; Zeng, X. W.; Xia, F.; Jin, W. L.; Liu, Y. D.; Hu, Y. F. Recent advances in flexible and stretchable sensing systems: From the perspective of system integration. ACS Nano 2020, 14, 6449– 6469.

3

Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-On-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

4

Mao, L. J.; Meng, Q. H.; Ahmad, A.; Wei, Z. X. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 2017, 7, 1700535.

5

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

6

Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378.

7

Kobayashi, Y.; Kumakura, K.; Akasaka, T.; Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 2012, 484, 223–227.

8

Wang, H.; Liu, J. L.; Wu, X. X.; Zhang, S. Q.; Zhang, Z. K.; Pan, W. W.; Yuan, G.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultra-long high quality catalyst-free WO3 nanowires for fabricating high-performance visible photodetectors. Nanotechnology 2020, 31, 274003.

9

Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 2012, 6, 1888–1900.

10

Liu, J. L.; Li, X.; Wang, H.; Yuan, G.; Suvorova, A.; Gain, S.; Ren, Y. L.; Lei, W. Ultrathin high-quality SnTe nanoplates for fabricating flexible near-infrared photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 31810–31822.

11

Lee, C. H.; Kim, D. R.; Zheng, X. L. Transfer printing methods for flexible thin film solar cells: Basic concepts and working principles. ACS Nano 2014, 8, 8746–8756.

12

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

13

Koma, A. van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 1999, 201-202, 236–241.

14

Koma, A.; Sunouchi, K.; Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B: Microelectronics Process Phenom. 1985, 3, 724.

15

Yen, M.; Bitla, Y.; Chu, Y. H. van der Waals heteroepitaxy on muscovite. Mater. Chem. Phys. 2019, 234, 185–195.

16

Liu, J. L.; Wang, H.; Li, X.; Chen, H.; Zhang, Z. K.; Pan, W. W.; Luo, G. Q.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultrasensitive flexible near- infrared photodetectors based on van der waals Bi2Te3 nanoplates. Appl. Surf. Sci. 2019, 484, 542–550.

17

Lian, Q.; Zhu, X. T.; Wang, X. D.; Bai, W.; Yang, J.; Zhang, Y. Y.; Qi, R. J.; Huang, R.; Hu, W. D.; Tang, X. D. et al. Ultrahigh-detectivity photodetectors with van der Waals epitaxial CdTe single-crystalline films. Small 2019, 15, e1900236.

18

Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet—Visible to infrared. Small 2017, 13, 1700894.

19

Mohanty, D.; Lu, Z. H.; Sun, X.; Xiang, Y.; Wang, Y. P.; Ghoshal, D.; Shi, J.; Gao, L.; Shi, S. F.; Washington, M. et al. Metalorganic vapor phase epitaxy of large size CdTe grains on mica through chemical and van der Waals interactions. Phys. Rev. Mater. 2018, 2, 113402.

20

Yang, Y. B.; Seewald, L.; Mohanty, D.; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, W. Y.; Shi, J.; Bhat, I.; Zhang, S. B. et al. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate. Appl. Surf. Sci. 2017, 413, 219–232.

21

Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X. et al. Ultrathin single- crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 2017, 29, 1703122.

22

Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. H. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

23

Zhu, D. D.; Xia, J.; Wang, L.; Li, X. Z.; Tian, L. F.; Meng, X. M. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale 2016, 8, 11375–11379.

24

Lei, W.; Antoszewski, J.; Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2015, 2, 041303.

25

Lei, W.; Ren, Y. L.; Madni, I.; Umana-Membreno, G. A.; Faraone, L. MBE growth of high quality HgCdSe on GaSb substrates. Infrared Phys. Technol. 2018, 92, 197–202.

26

Dumas, D.; Fendler, M.; Baier, N.; Primot, J.; Le Coarer, E. Curved focal plane detector array for wide field cameras. Appl. Opt. 2012, 51, 5419–5424.

27

Bhan, R. K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 2019, 27, 174–193.

28

Guenter, B.; Joshi, N.; Stoakley, R.; Keefe, A.; Geary, K.; Freeman, R.; Hundley, J.; Patterson, P.; Hammon, D.; Herrera, G. et al. Highly curved image sensors: A practical approach for improved optical performance. Opt. Express 2017, 25, 13010–13023.

29

Wen, X. X.; Lu, Z. H.; Sun, X.; Xiang, Y.; Chen, Z. Z.; Shi, J.; Bhat, I.; Wang, G. C.; Washington, M.; Lu, T. M. Epitaxial CdTe thin films on mica by vapor transport deposition for flexible solar cells. ACS Appl. Energy Mater. 2020, 3, 4589–4599.

30

Mohanty, D.; Lu, Z. H.; Sun, X.; Xiang, Y.; Gao, L.; Shi, J.; Zhang, L. H.; Kisslinger, K.; Washington, M. A.; Wang, G. C. et al. Growth of epitaxial CdTe thin films on amorphous substrates using single crystal graphene buffer. Carbon 2019, 144, 519–524.

31

Lei, W.; Gu, R. J.; Antoszewski, J.; Dell, J.; Neusser, G.; Sieger, M.; Mizaikoff, B.; Faraone, L. MBE growth of mid-wave infrared HgCdTe layers on GaSb alternative substrates. J. Electron. Mater. 2015, 44, 3180–3187.

32

Lei, W.; Gu, R. J.; Antoszewski, J.; Dell, J.; Faraone, L. GaSb: A new alternative substrate for epitaxial growth of HgCdTe. J. Electron. Mater. 2014, 43, 2788–2794.

33

Pan, W. W.; Gu, R. J.; Zhang, Z. K.; Liu, J. L.; Lei, W.; Faraone, L. Strained CdZnTe/CdTe superlattices as threading dislocation filters in lattice mismatched MBE growth of CdTe on GaSb. J. Electron. Mater. 2020, 49, 6983–6989.

34

Soni, U.; Arora, V.; Sapra, S. Wurtzite or zinc blende? Surface decides the crystal structure of nanocrystals. CrystEngComm 2013, 15, 5458–5463.

35

McCauley, J. W.; Newnham, R. E.; Gibbs, G. V. Crystal structure analysis of synthetic fluorophlogopite. Am. Mineral. 1973, 58, 249– 254.

36

Samarth, N.; Luo, H.; Furdyna, J. K.; Qadri, S. B.; Lee, Y. R.; Ramdas, A. K.; Otsuka, N. Growth of cubic (zinc blende) CdSe by molecular beam epitaxy. Appl. Phys. Lett. 1989, 54, 2680–2682.

37

Zardo, I.; Conesa-Boj, S.; Peiro, F.; Morante, J. R.; Arbiol, J.; Uccelli, E.; Abstreiter, G.; Morral, A. F. I. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 2009, 80, 245324.

38

Poplawsky, J. D.; Guo, W.; Paudel, N.; Ng, A.; More, K.; Leonard, D.; Yan, Y. F. Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 2016, 7, 12537.

39

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

40

Ninomiya, S.; Adachi, S. Optical properties of cubic and hexagonal CdSe. J. Appl. Phys. 1995, 78, 4681–4689.

41

Mohanty, D.; Sun, X.; Lu, Z. H.; Washington, M.; Wang, G. C.; Lu, T. M.; Bhat, I. B. Analyses of orientational superlattice domains in epitaxial ZnTe thin films grown on graphene and mica. J. Appl. Phys. 2018, 124, 175301.

42

Park, Y.; Cich, M. J.; Zhao, R.; Specht, P.; Weber, E. R.; Stach, E.; Nozaki, S. Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth. J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct. Process., Meas., Phenom. 2000, 18, 1566–1571.

43

Cullis, A. G.; Chew, N. G.; Hutchison, J. L. Formation and elimination of surface ion milling defects in cadmium telluride, zinc sulphide and zinc selenide. Ultramicroscopy 1985, 17, 203–211.

44

Pelati, D.; Patriarche, G.; Mauguin, O.; Largeau, L.; Travers, L.; Brisset, F.; Glas, F.; Oehler, F. GaAs (111) epilayers grown by MBE on Ge (111): Twin reduction and polarity. J. Cryst. Growth 2019, 519, 84–90.

45

Zhang, S. X.; Zhang, J.; Qiu, X. F.; Wu, Y.; Chen, P. P. Characterization of the microstructures and optical properties of CdTe(001) and (111) thin films grown on GaAs(001) substrates by molecular beam epitaxy. J. Cryst. Growth 2020, 546, 125756.

46

Huerta, J.; López, M.; Zelaya-Angel, O. Phase stability during molecular beam epitaxial growth of CdTe on InSb(111) substrates. J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct. Process., Meas., Phenom. 2000, 18, 1716–1719.

47

Fan, D. J.; Lee, K.; Forrest, S. R. Flexible thin-film InGaAs photodiode focal plane array. ACS Photonics 2016, 3, 670–676.

48

Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 1956, 104, 1508–1516.

49

Daraselia, M.; Carmody, M.; Edwall, D. D.; Tiwald, T. E. Improved model for the analysis of FTIR transmission spectra from multilayer HgCdTe structures. J. Electron. Mater. 2005, 34, 762–767.

50

Adachi, S. Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information; Springer: New York, 1999.

51

Wagner, R. G.; Breitweiser, G. C. Interface-related electrical properties of cadmium selenide films. Solid-State Electron. 1969, 12, 229–238.

52

Türe, I. E.; Russell, G. J.; Woods, J. Photoconductivity, structure and defect levels in CdSe crystals. J. Cryst. Growth 1982, 59, 223–228.

53

Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching- free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

54

Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

Nano Research
Pages 368-376
Cite this article:
Pan W, Liu J, Zhang Z, et al. Large area van der Waals epitaxy of II-VI CdSe thin films for flexible optoelectronics and full-color imaging. Nano Research, 2022, 15(1): 368-376. https://doi.org/10.1007/s12274-021-3485-x
Topics:

945

Views

19

Crossref

19

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 19 January 2021
Revised: 27 March 2021
Accepted: 30 March 2021
Published: 04 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return