AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Recent advances on interface engineering of perovskite solar cells

Wenjing Yu1Xiaoran Sun1Mu Xiao2Tian Hou1Xu Liu3Bolin Zheng3Hua Yu1Meng Zhang1,3( )Yuelong Huang1( )Xiaojing Hao3( )
Institute of PhotovoltaicsSouthwest Petroleum UniversityChengdu610500China
Nanomaterials CentreAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, BrisbaneQLD4072Australia
The Australian Centre for Advanced PhotovoltaicsSchool of Photovoltaic and Renewable Energy Engineering, University of New South WalesSydney, NSW2052Australia
Show Author Information

Graphical Abstract

Abstract

Lead halide perovskite solar cells (PSCs) have been rapidly developed in the past decade. Owing to its excellent power conversion efficiency with robust and low-cost fabrication, perovskite quickly becomes one of the most promising candidates for the next-generation photovoltaic technology. With the development of PSCs, the interface engineering has witnessed its increasingly critical role in maximizing the device performance as well as the long-term stability, because the interfaces in PSCs are closely correlated with the defect management, carrier dynamics and surface passivation. This review focuses on interfacial modification between the perovskite active layer and the charge transport layer, as well as the recent advances on high-efficiency and stable PSCs driven by interface engineering strategies. The contributing roles of interface engineering in terms of defect passivation, inhibiting ion migration, optimization of energy band alignment and morphological control are discussed. Finally, based on the latest progress and advances, strategies and opportunities for the future research on interface engineering for PSCs are proposed to promote the development of perovskite photovoltaic technology.

References

1

Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584-1589.

2

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476-480.

3

Park, N. G. Emergence and evolution of organometal halide perovskite solar cell. Rapid Commun. Photosci. 2015, 4, 29-30.

4

Park, N. G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65-72.

5

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.

6

Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.

7

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

8

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.

9

Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y. S.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622-625.

10

Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206-209.

11

Gao, F.; Zhao, Y.; Zhang, X. W.; You, J. B. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902650.

12

Ju, S.; Byun, M.; Kim, M.; Jun, J.; Huh, D.; Kim, D. S.; Jo, Y.; Lee, H. Fabrication of perovskite solar cell with high short-circuit current density (Jsc) using moth-eye structure of SiOx. Nano Res. 2020, 13, 1156-1161.

13

Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; Yusoff, A. R. B. M.; Nazeeruddin, M. K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49, 4496-4526.

14

Zhang, X. Y.; Li, L. N.; Sun, Z. H.; Luo, J. H. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 2019, 48, 517- 539.

15

He, M.; Li, B.; Cui, X.; Jiang, B. B.; He, Y. J.; Chen, Y. H.; O'Neil, D.; Szymanski, P.; Ei-Sayed, M. A.; Huang, J. S. et al. Meniscus- assisted solution printing of large-grained perovskite films for high- efficiency solar cells. Nat. Commun. 2017, 8, 16045.

16

Chen, H.; Ye, F.; Tang, W. T.; He, J. J.; Yin, M. S.; Wang, Y. B.; Xie, F. X.; Bi, E. B.; Yang, X. D.; Grätzel, M. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92-95.

17

You, P.; Li, G. J.; Tang, G. Q.; Cao, J. P.; Yan, F. Ultrafast laser- annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 2020, 13, 1187-1196.

18

Ding, J.; Han, Q. W.; Ge, Q. Q.; Xue, D. J.; Ma, J. Y.; Zhao, B. Y.; Chen, Y. X.; Liu, J.; Mitzi, D. B.; Hu, J. S. Fully air-bladed high- efficiency perovskite photovoltaics. Joule 2019, 3, 402-416.

19

Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511-515.

20

Jodlowski, A.; Rodríguez-Padrón, D.; Luque, R.; De Miguel, G. Alternative perovskites for photovoltaics. Adv. Energy Mater. 2018, 8, 1703120.

21

Xu, W. Z.; Zheng, L. Y.; Zhang, X. T.; Cao, Y.; Meng, T. Y.; Wu, D. Z.; Liu, L.; Hu, W. P.; Gong, X. Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 2018, 8, 1703178.

22

Ye, S. Y.; Rao, H. X.; Yan, W. B.; Li, Y. L.; Sun, W. H.; Peng, H. T.; Liu, Z. W.; Bian, Z. Q.; Li, Y. F.; Huang, C. H. A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 2016, 28, 9648-9654.

23

Zheng, X. P.; Chen, B.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y. Z.; Wei, H. T.; Zeng, X. C.; Huang, J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.

24

Bi, E. B.; Chen, H.; Xie, F. X.; Wu, Y. Z.; Chen, W.; Su, Y. J.; Islam, A.; Grätzel, M.; Yang, X. D.; Han, L. Y. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 2017, 8, 15330.

25

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 2019, 13, 460-466.

26

Kim, J.; Lee, S. H.; Lee, J. H.; Hong, K. H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 2014, 5, 1312-1317.

27

Wu, Z. F.; Liu, Z. H.; Hu, Z. H.; Hawash, Z.; Qiu, L. B.; Jiang, Y.; Ono, L. K.; Qi, Y. B. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 2019, 31, 1804284.

28

Gelmetti, I.; Montcada, N. F.; Pérez-Rodríguez, A.; Barrena, E.; Ocal, C.; García-Benito, I.; Molina-Ontoria, A.; Martín, N.; Vidal- Ferran, A.; Palomares, E. Energy alignment and recombination in perovskite solar cells: Weighted influence on the open circuit voltage. Energy Environ. Sci. 2019, 12, 1309-1316.

29

Lin, Y. Z.; Chen, B.; Zhao, F. W.; Zheng, X. P.; Deng, Y. H.; Shao, Y. C.; Fang, Y. J.; Bai, Y.; Wang, C. R.; Huang, J. S. Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 2017, 29, 1700607.

30

Noel, N. K.; Habisreutinger, S. N.; Pellaroque, A.; Pulvirenti, F.; Wenger, B.; Zhang, F. Y.; Lin, Y. H.; Reid, O. G.; Leisen, J.; Zhang, Y. D. et al. Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ. Sci. 2019, 12, 3063-3073.

31

Tang, C. S.; Yin, X. M.; Zeng, S. W.; Wu, J.; Yang, M.; Yang, P.; Diao, C. Z.; Feng, Y. P.; Breese, M. B. H.; Chia, E. E. M. et al. Interfacial oxygen-driven charge localization and plasmon excitation in unconventional superconductors. Adv. Mater. 2020, 32, 2000153.

32

Zhao, X.; Park, N. G. Stability issues on perovskite solar cells. Photonics 2015, 2, 1139-1151.

33

Meggiolaro, D.; Mosconi, E.; De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 2019, 4, 779-785.

34

Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.

35

Schulz, P.; Cahen, D.; Kahn, A. Halide perovskites: Is it all about the interfaces? Chem. Rev. 2019, 119, 3349-3417.

36

Cho, K. T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M. K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621-627.

37

Wang, H. X.; Guerrero, A.; Bou, A.; Al-Mayouf, A. M.; Bisquert, J. Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy Environ. Sci. 2019, 12, 2054-2079.

38

Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778-2788.

39

Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; De Villers, B. J. T.; Sellinger, A.; Berry, J. J.; Luther, J. M. Tailored interfaces of unencapsulated perovskite solar cells for > 1, 000 hour operational stability. Nat. Energy 2018, 3, 68-74.

40

Azmi, R.; Lee, C. L.; Jung, I. H.; Jang, S. Y. Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv. Energy Mater. 2018, 8, 1702934.

41

Lira-Cantú, M. Perovskite solar cells: Stability lies at interfaces. Nat. Energy 2017, 2, 17115.

42

Wu, J. H.; Shi, J. J; Li, Y. M.; Li, H. S.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Quantifying the interface defect for the stability origin of perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901352.

43

Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J. P.; Bulović, V. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192-2199.

44

Yu, J. C.; Kim, D. B.; Baek, G.; Lee, B. R.; Jung, E. D.; Lee, S.; Chu, J. H.; Lee, D. K.; Choi, K. J.; Cho, S. et al. High-performance planar perovskite optoelectronic devices: A morphological and interfacial control by polar solvent treatment. Adv. Mater. 2015, 27, 3492-500.

45

Liu, T. H.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. H. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457.

46

Shao, S. Y.; Cui, Y.; Duim, H.; Qiu, X. K.; Dong, J. J.; Ten Brink, G. H.; Portale, G.; Chiechi, R. C.; Zhang, S. Q.; Hou, J. H. et al. Enhancing the performance of the half tin and half lead perovskite solar cells by suppression of the bulk and interfacial charge recombination. Adv. Mater. 2018, 30, 1803703.

47

Ummadisingu, A.; Steier, L.; Seo, J. Y.; Matsui, T.; Abate, A.; Tress, W.; Gratzel, M. The effect of illumination on the formation of metal halide perovskite films. Nature 2017, 545, 208-212.

48

Adinolfi, V.; Peng, W.; Walters, G.; Bakr, O. M.; Sargent, E. H. The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance. Adv. Mater. 2018, 30, 1700764.

49

Ma, C. Q.; Park, N. G. A realistic methodology for 30% efficient perovskite solar cells. Chem 2020, 6, 1254-1264.

50

Zhu, P. C.; Gu, S.; Luo, X.; Gao, Y.; Li, S. L.; Zhu, J.; Tan, H. R. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 2020, 10, 1903083.

51

Wu, W. Q.; Liao, J. F.; Jiang, Y.; Wang, L.; Kuang, D. B. Bifacial contact junction engineering for high-performance perovskite solar cells with efficiency exceeding 21%. Small 2019, 15, 1900606.

52

Subhani, W. S.; Wang, K.; Du, M. Y.; Wang, X. L.; Liu, S. Z. Interface- modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803785.

53

Byranvand, M. M.; Kim, T.; Song, S.; Kang, G.; Ryu, S. U.; Park, T. p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv. Energy Mater. 2018, 8, 1702235.

54

Liu, Y.; Bag, M.; Renna, L. A.; Page, Z. A.; Kim, P.; Emrick, T.; Venkataraman, D.; Russell, T. P. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater. 2016, 6, 1501606.

55

Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y. B.; Huang, J. S. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842-3867.

56

Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 2013, 13, 3124-3128.

57

Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

58

Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y. M.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y. T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540-15547.

59

Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 2014, 118, 16995-17000.

60

Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885.

61

Liang, Z. R.; Bi, Z. N.; Gao, K.; Fu, Y. F.; Guan, P. Y.; Feng, X. L.; Chai, Z. S.; Xu, G.; Xu, X. Q. Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl. Surf. Sci. 2019, 463, 939-946.

62

Zhu, Q. J.; Wu, J. H.; Yuan, P. Q.; Zhang, M. J.; Dou, Y. F.; Wang, X. B.; Zou, J. J.; Sun, W. H.; Fan, L. Q.; Lan, Z. Ammonium fluoride interface modification for high-performance and long-term stable perovskite solar cells. Energy Technol. 2020, 8, 1901017.

63

Jung, E. H.; Chen, B.; Bertens, K.; Vafaie, M.; Teale, S.; Proppe, A.; Hou, Y.; Zhu, T.; Zheng, C.; Sargent, E. H. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 2020, 5, 2796-2801.

64

Yang, D.; Zhou, X.; Yang, R. X.; Yang, Z.; Yu, W.; Wang, X. L.; Li, C.; Liu, S. Z.; Chang, R. P. H. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 2016, 9, 3071-3078.

65

Noel, N. K.; Habisreutinger, S. N.; Wenger, B.; Lin, Y. H.; Zhang, F.; Patel, J. B.; Kahn, A.; Johnston, M. B.; Snaith, H. J. Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 2020, 10, 1903231.

66

Wang, Q.; Dong, Q. F.; Li, T.; Gruverman, A.; Huang, J. S. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 2016, 28, 6734-6739.

67

Xue, J. J.; Wang, R.; Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 2020, 5, 809-827.

68

Wang, H. L.; Song, J.; Li, Z. K.; Li, L. D.; Li, J. H.; Li, X. B.; Qu, J. L.; Wong, W. Y. A linear conjugated tetramer as a surface-modification layer to increase perovskite solar cell performance and stability. J. Mater. Chem. A 2020, 8, 11728-11733.

69

Zhang, J. K.; Mao, W. J.; Duan, J. J.; Huang, S. M.; Zhang, Z. J.; Ou- Yang, W.; Zhang, X. H.; Sun, Z.; Chen, X. H. Enhanced efficiency and thermal stability of perovskite solar cells using poly(9-vinylcarbazole) modified perovskite/pcbm interface. Electrochim. Acta 2019, 318, 384-391.

70

Luo, D. Y.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442-1446.

71

Yang, T. Y.; Gregori, G.; Pellet, N.; Gratzel, M.; Maier, J. The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. , Int. Ed. 2015, 54, 7905- 7910.

72

Xiao, Z. G.; Yuan, Y. B.; Shao, Y. C.; Wang, Q.; Dong, Q. F.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. S. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193-198.

73

Yuan, Y. B.; Chae, J.; Shao, Y. C.; Wang, Q.; Xiao, Z. G.; Centrone, A.; Huang, J. S. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500615.

74

Eames, C.; Frost, J. M.; Barnes, P. R. F.; O'Regan, B. C.; Walsh, A.; Islam, M. S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497.

75

Yuan, Y. B.; Wang, Q.; Shao, Y. C.; Lu, H. D.; Li, T.; Gruverman, A.; Huang, J. S. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 2016, 6, 1501803.

76

Rong, Y. G.; Hu, Y.; Ravishankar, S.; Liu, H. W.; Hou, X. M.; Sheng, Y. S.; Mei, A. Y.; Wang, Q. F.; Li, D. Y.; Xu, M. et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. 2017, 10, 2383-2391.

77

Kang, D. H.; Park, N. G. On the current-voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 2019, 31, 1805214.

78

Aydin, E.; De Bastiani, M.; De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019, 31, 1900428.

79

Van Reenen, S.; Kemerink, M.; Snaith, H. J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 3808-3814.

80

Wojciechowski, K.; Stranks, S. D.; Abate, A.; Sadoughi, G.; Sadhanala, A.; Kopidakis, N.; Rumbles, G.; Li, C. Z.; Friend, R. H.; Jen, A. K. Y. et al. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. ACS Nano 2014, 8, 12701- 12709.

81

Liu, X.; Zhang, Y. F.; Shi, L.; Liu, Z. H.; Huang, J. L.; Yun, J. S.; Zeng, Y. Y.; Pu, A. B.; Sun, K. W.; Hameiri, Z. et al. Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800138.

82

Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609.

83

Huang, P.; Chen, Q. Y.; Zhang, K. C.; Yuan, L. G.; Zhou, Y.; Song, B.; Li, Y. F. 21.7% efficiency achieved in planar n-i-p perovskite solar cells via interface engineering with water-soluble 2d TiS2. J. Mater. Chem. A 2019, 7, 6213-6219.

84

Hanmandlu, C.; Swamy, S.; Singh, A.; Chen, H. A.; Liu, C. C.; Lai, C. S.; Mohapatra, A.; Pao, C. W.; Chen, P. L.; Chu, C. W. Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells via quantum dot passivation. J. Mater. Chem. A 2020, 8, 5263-5274.

85

Tavakoli, M. M.; Tavakoli, R.; Yadav, P.; Kong, J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J. Mater. Chem. A 2019, 7, 679-686.

86

Zheng, T.; Fan, L. S.; Zhou, H.; Zhao, Y.; Jin, B.; Peng, R. F. Engineering of electron extraction and defect passivation via anion- doped conductive fullerene derivatives as interlayers for efficient invert perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 24747-24755.

87

Dong, Q.; Ho, C. H. Y.; Yu, H.; Salehi, A.; So, F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 2019, 31, 6833-6840.

88

Peng, J.; Wu, Y. L.; Ye, W.; Jacobs, D. A.; Shen, H. P.; Fu, X.; Wan, Y. M.; Duong, T.; Wu, N. D.; Barugkin, C. et al. Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 2017, 10, 1792-1800.

89

Hu, X. F.; Wang, H. X.; Wang, M.; Zang, Z. G. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 2020, 206, 816-825.

90

Zhong, Y.; Hufnagel, M.; Thelakkat, M.; Li, C.; Huettner, S. Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1908920.

91

Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613-617.

92

Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P. E.; Kießling, J.; Kohler, A.; Vaynzof, Y.; Huettner, S. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 2016, 28, 2446-2454.

93

Li, X. D.; Fu, S.; Liu, S. Y.; Wu, Y. L.; Zhang, W. X.; Song, W. J.; Fang, J. F. Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy 2019, 64, 103962.

94

Hu, Q.; Chen, W.; Yang, W. Q.; Li, Y.; Zhou, Y. C.; Larson, B. W.; Johnson, J. C.; Lu, Y. H.; Zhong, W. K.; Xu, J. Q. et al. Improving efficiency and stability of perovskite solar cells enabled by a near- infrared-absorbing moisture barrier. Joule 2020, 4, 1575-1593.

95

Chen, W.; Han, B.; Hu, Q.; Gu, M.; Zhu, Y. D.; Yang, W. Q.; Zhou, Y. C.; Luo, D. Y.; Liu, F. Z.; Cheng, R. et al. Interfacial stabilization for inverted perovskite solar cells with long-term stability. Sci. Bull. 2021, DOI: 10.1016/j.scib.2021.02.029.

96

Bi, E. B.; Tang, W. T.; Chen, H.; Wang, Y. B.; Barbaud, J.; Wu, T. H.; Kong, W. Y.; Tu, P.; Zhu, H.; Zeng, X. Q. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 2019, 3, 2748-2760.

97

Shahiduzzaman, M.; Yamamoto, K.; Furumoto, Y.; Kuwabara, T.; Takahashi, K.; Taima, T. Enhanced photovoltaic performance of perovskite solar cells via modification of surface characteristics using a fullerene interlayer. Chem. Lett. 2015, 44, 1735-1737.

98

Cao, T. T.; Chen, K.; Chen, Q. Y.; Zhou, Y.; Chen, N.; Li, Y. F. Fullerene derivative-modified SnO2 electron transport layer for highly efficient perovskite solar cells with efficiency over 21%. ACS Appl. Mater. Interfaces 2019, 11, 33825-33834.

99

Yang, G.; Wang, C. L.; Lei, H. W.; Zheng, X. L.; Qin, P. L.; Xiong, L. B.; Zhao, X. Z.; Yan, Y. F.; Fang, G. J. Interface engineering in planar perovskite solar cells: Energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 2017, 5, 1658-1666.

100

Li, W. Z.; Li, J. W.; Niu, G. D.; Wang, L. D. Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 11688-11695.

101

Marshall, K. P.; Walton, R. I.; Hatton, R. A. Tin perovskite/ fullerene planar layer photovoltaics: Improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 2015, 3, 11631- 11640.

102

Lai, W. C.; Lin, K. W.; Guo, T. F.; Chen, P.; Wang, Y. T. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Appl. Phys. Lett. 2015, 107, 253301.

103

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727-3732.

104

Tian, C. B.; Lin, K. B.; Lu, J. X.; Feng, W. J.; Song, P. Q.; Xie, L. Q.; Wei, Z. H. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability. Small Methods 2020, 4, 1900476.

105

Wang, B.; Yang, J.; Lu, L.; Xiao, W.; Wu, H.; Xiong, S.; Tang, J.; Duan, C.; Bao, Q. Interface engineering of air-stable n-doping fullerene-modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 2020, 7, 1901964.

106

Wang, J.; Zhang, J.; Zhou, Y. Z.; Liu, H. B.; Xue, Q. F.; Li, X. S.; Chueh, C. C.; Yip, H. L.; Zhu, Z. L.; Jen, A. K. Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a lewis base. Nat. Commun. 2020, 11, 177.

107

Thambidurai, M.; Dewi, H. A.; Harikesh, P. C.; Foo, S.; Salim, K. M. M.; Mathews, N.; Dang, C. Highly efficient perovskite solar cells with Ba(OH)2 interface modification of mesoporous TiO2 electron transport layer. ACS Appl. Energy Mater. 2018, 1, 5847-5852.

108

Li, S. P.; Li, X.; Yang, J. Y.; Jiang, Q. H.; Lai, H.; Tan, Y.; Xiao, B.; Xu, T. Improvement of photovoltaic performance of perovskite solar cells by interface modification with CaTiO3. J. Power Sources 2020, 449, 227504.

109

Xie, Y.; Yin, J.; Zheng, J.; Fan, Y.; Wu, J.; Zhang, X. Facile RbBr interface modification improves perovskite solar cell efficiency. Mater. Today Chem. 2019, 14, 100179.

110

Shallcross, R. C.; Olthof, S.; Meerholz, K.; Armstrong, N. R. Impact of titanium dioxide surface defects on the interfacial composition and energetics of evaporated perovskite active layers. ACS Appl. Mater. Interfaces 2019, 11, 32500-32508.

111

Zhuang, Q. X.; You, G. F.; Wang, L. J.; Lin, X. Y.; Zou, D.; Zhen, H. Y.; Ling, Q. D. Enhanced performance and stability of TiO2-nanoparticles- based perovskite solar cells employing a cheap polymeric surface modifier. ChemSusChem 2019, 12, 4824-4831.

112

Euvrard, J.; Gunawan, O.; Mitzi, D. B. Impact of PbI2 passivation and grain size engineering in CH3NH3PbI3 solar absorbers as revealed by carrier-resolved photo-hall technique. Adv. Energy Mater. 2019, 9, 1902706.

113

Wang, H. H.; Wang, Z. W.; Yang, Z.; Xu, Y. Z.; Ding, Y.; Tan, L. G.; Yi, C. Y.; Zhang, Z.; Meng, K.; Chen, G. et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 2000865.

114

Li, Z. P.; Zhang, C. P.; Shao, Z. P.; Fan, Y. P.; Liu, R. R.; Wang, L.; Pang, S. P. Controlled surface decomposition derived passivation and energy-level alignment behaviors for high performance perovskite solar cells. J. Mater. Chem. A 2018, 6, 9397-9401.

115

Barbé, J.; Newman, M.; Lilliu, S.; Kumar, V.; Lee, H. K. H.; Charbonneau, C.; Rodenburg, C.; Lidzey, D.; Tsoi, W. C. Localized effect of PbI2 excess in perovskite solar cells probed by high- resolution chemical-optoelectronic mapping. J. Mater. Chem. A 2018, 6, 23010-23018.

116

Chen, Q.; Zhou, H. P.; Song, T. B.; Luo, S.; Hong, Z. R.; Duan, H. S.; Dou, L. T.; Liu, Y. S.; Yang, Y. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014, 14, 4158-4163.

117

Song, J. X.; Zheng, E. Q.; Bian, J.; Wang, X. F.; Tian, W. J.; Sanehira, Y.; Miyasaka, T. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 2015, 3, 10837-10844.

118

Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl. Phys. Lett. 2013, 103, 183906.

119

Chen, Y. C.; Meng, Q.; Xiao, Y. Y.; Zhang, X. B.; Sun, J. J.; Han, C. B.; Gao, H. L.; Zhang, Y. Z.; Lu, Y.; Yan, H. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 44101-44108.

120

Kim, H.; Lee, S. U.; Lee, D. Y.; Paik, M. J.; Na, H.; Lee, J.; Seok, S. I. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1902740.

121

Koh, T. M.; Shanmugam, V.; Guo, X. T.; Lim, S. S.; Filonik, O.; Herzig, E. M.; Müller-Buschbaum, P.; Swamy, V.; Chien, S. T.; Mhaisalkar, S. G. et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. J. Mater. Chem. A 2018, 6, 2122-2128.

122

Alharbi, E. A.; Alyamani, A. Y.; Kubicki, D. J.; Uhl, A. R.; Walder, B. J.; Alanazi, A. Q.; Luo, J. S.; Burgos-Caminal, A.; Albadri, A.; Albrithen, H. et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 2019, 10, 3008.

123

Tavakoli, M. M.; Bi, D. Q.; Pan, L. F.; Hagfeldt, A.; Zakeeruddin, S. M.; Grätzel, M. Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv. Energy Mater. 2018, 8, 1800275.

124

Jokar, E.; Chien, C. H.; Fathi, A.; Rameez, M.; Chang, Y. H.; Diau, E. W. G. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 2018, 11, 2353-2362.

125

Hu, Y. H.; Schlipf, J.; Wussler, M.; Petrus, M. L.; Jaegermann, W.; Bein, T.; Muller-Buschbaum, P.; Docampo, P. Hybrid perovskite/ perovskite heterojunction solar cells. ACS Nano 2016, 10, 5999- 6007.

126

Cho, Y.; Soufiani, A. M.; Yun, J. S.; Kim, J.; Lee, D. S.; Seidel, J.; Deng, X. F.; Green, M. A.; Huang, S. J.; Ho-Baillie, A. W. Y. Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 2018, 8, 1703392.

127

Wei, F. J.; Jiao, B.; Dong, H.; Xu, J.; Lei, T.; Zhang, J. J.; Yu, Y.; Ma, L.; Wang, D. D.; Chen, J. B. et al. Bifunctional π-conjugated ligand assisted stable and efficient perovskite solar cell fabrication via interfacial stitching. J. Mater. Chem. A 2019, 7, 16533-16540.

128

Yang, X. Y.; Luo, D. Y.; Xiang, Y. R.; Zhao, L. C.; Anaya, M.; Shen, Y. L.; Wu, J.; Yang, W. Q.; Chiang, Y. H.; Tu, Y. G. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 2021, 33, 2006435.

129

Fang, X.; Ding, J. N.; Yuan, N. Y.; Sun, P.; Lv, M. H.; Ding, G. Q.; Zhu, C. Graphene quantum dot incorporated perovskite films: Passivating grain boundaries and facilitating electron extraction. Phys. Chem. Chem. Phys. 2017, 19, 6057-6063.

130

Wang, S. R.; Wang, A. L.; Deng, X. Y.; Xie, L. S.; Xiao, A. D.; Li, C. B.; Xiang, Y.; Li, T. S.; Ding, L. M.; Hao, F. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A 2020, 8, 12201-12225.

131

Zhao, Y. Y.; Wang, Y. D.; Duan, J. L.; Yang, X. Y.; Tang, Q. W. Divalent hard lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells. J. Mater. Chem. A 2019, 7, 6877-6882.

132

Zhang, F.; Bi, D. Q.; Pellet, N.; Xiao, C. X.; Li, Z.; Berry, J. J.; Zakeeruddin, S. M.; Zhu, K.; Grätzel, M. Suppressing defects through the synergistic effect of a lewis base and a lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2018, 11, 3480-3490.

133

Lee, J. W.; Kim, H. S.; Park, N. G. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 2016, 49, 311-319.

134

Niu, T. Q.; Lu, J.; Munir, R.; Li, J. B.; Barrit, D. Y.; Zhang, X.; Hu, H. L.; Yang, Z.; Amassian, A.; Zhao, K. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 2018, 30, 1706576.

135

Niu, T. Q.; Lu, J.; Tang, M. C.; Barrit, D.; Smilgies, D. M.; Yang, Z.; Li, J. B.; Fan, Y. Y.; Luo, T.; McCulloch, I. et al. High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule- passivated Ruddlesden-Popper/3D heterostructured film. Energy Environ. Sci. 2018, 11, 3358-3366.

136

Lin, Y. Z.; Shen, L.; Dai, J.; Deng, Y. H.; Wu, Y.; Bai, Y.; Zheng, X. P.; Wang, J. Y.; Fang, Y. J.; Wei, H. T. et al. π-conjugated Lewis base: Efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 2017, 29, 1604545.

137

Gao, L. L.; Huang, S.; Chen, L.; Li, X. L.; Ding, B.; Huang, S. Y.; Yang, G. J. Excellent stability of perovskite solar cells by passivation engineering. Sol. RRL 2018, 2, 1800088.

138

Jiang, Y. Y.; Li, J.; Xiong, S. X.; Jiang, F. Y.; Liu, T. F.; Qin, F.; Hu, L.; Zhou, Y. H. Dual functions of interface passivation and n-doping using 2, 6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. J. Mater. Chem. A 2017, 5, 17632-17639.

139

Chen, W.; Zhou, Y. C.; Chen, G. C.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Huang, L.; Ng, A. M. C.; Djurišić, A. B.; He, Z. B. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803872.

140

Zheng, X. L.; Song, Z. N.; Chen, Z. L.; Bista, S. S.; Gui, P. B.; Shrestha, N.; Chen, C.; Li, C. W.; Yin, X. X.; Awni, R. A. et al. Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. C 2020, 8, 1972-1980.

141

Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815-9821.

142

Yang, Z.; Dou, J. J.; Kou, S.; Dang, J. L.; Ji, Y. Q.; Yang, G. J.; Wu, W. Q.; Kuang, D. B.; Wang, M. Q. Multifunctional phosphorus- containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1910710.

143

Lau, C. F. J.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M.; Bing, J. M.; Wilkinson, B.; Hu, L.; Patterson, R. et al. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 2018, 6, 5580-5586.

144

Lau, C. F. J.; Zhang, M.; Deng, X. F.; Zheng, J. H.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Green, M. A.; Huang, S. J. et al. Strontium- doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2017, 2, 2319-2325.

145

Yang, S.; Chen, S. S.; Mosconi, E.; Fang, Y. J.; Xiao, X.; Wang, C. C.; Zhou, Y.; Yu, Z. H.; Zhao, J. J.; Gao, Y. L. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 2019, 365, 473-478.

146

Carrillo, J.; Guerrero, A.; Rahimnejad, S.; Almora, O.; Zarazua, I.; Mas-Marza, E.; Bisquert, J.; Garcia-Belmonte, G. Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 2016, 6, 1502246.

147

Wang, Y. B.; Wu, T. H.; Barbaud, J.; Kong, W. Y.; Cui, D. Y.; Chen, H.; Yang, X.; Han, L. Y. Stabilizing heterostructures of soft perovskite semiconductors. Science 2019, 365, 687-691.

148

Xu, Z. H.; Wang, L.; Han, Q. J.; Kamata, Y.; Ma, T. L. Suppression of iodide ion migration via Sb2S3 interfacial modification for stable inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 12867-12873.

149

Liu, T. T.; Zhang, J.; Qin, M. C.; Wu, X.; Li, F. Z.; Lu, X. H.; Zhu, Z. L.; Jen, A. K. Y. Modifying surface termination of CsPbI3 grain boundaries by 2D perovskite layer for efficient and stable photovoltaics. Adv. Funct. Mater. 2021, 31, 2009515.

150

Li, Q.; Zhao, Y. C.; Fu, R.; Zhou, W. K.; Zhao, Y.; Lin, F.; Liu, S.; Yu, D. P.; Zhao, Q. Enhanced long-term stability of perovskite solar cells using a double-layer hole transport material. J. Mater. Chem. A 2017, 5, 14881-14886.

151

Zhao, Y.; Zhao, Y. C.; Zhou, W. K.; Li, Q.; Fu, R.; Yu, D. P.; Zhao, Q. In situ cesium modification at interface enhances the stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 33205-33213.

152

Hawash, Z.; Raga, S. R.; Son, D. Y.; Ono, L. K.; Park, N. G.; Qi, Y. B. Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility. J. Phys. Chem. Lett. 2017, 8, 3947-3953.

153

Li, M. H.; Yan, X. Q.; Kang, Z.; Huan, Y. H.; Li, Y.; Zhang, R. X.; Zhang, Y. Hydrophobic polystyrene passivation layer for simultaneously improved efficiency and stability in perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 18787-18795.

154

Lu, J. F.; Lin, X. F.; Jiao, X. C.; Gengenbach, T.; Scully, A. D.; Jiang, L. C.; Tan, B. E.; Sun, J. S.; Li, B.; Pai, N. et al. Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci. 2018, 11, 1880-1889.

155

Zhao, B. H.; Yan, X. Y.; Zhang, T.; Ma, X. T.; Liu, C. B.; Liu, H. Y.; Yan, K. Y.; Chen, Y. L.; Li, X. Y. Introduction of multifunctional triphenylamino derivatives at the perovskite/HTL interface to promote efficiency and stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 9300-9306.

156

Salado, M.; Andresini, M.; Huang, P.; Khan, M. T.; Ciriaco, F.; Kazim, S.; Ahmad, S. Interface engineering by thiazolium iodide passivation towards reduced thermal diffusion and performance improvement in perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1910561.

157

Gong, O. Y.; Kim, Y.; Kim, D. H.; Han, G. S.; Jeong, S.; Jung, H. S. Revisiting effects of ligand-capped nanocrystals in perovskite solar cells. ACS Energy Lett. 2020, 5, 1032-1034.

158

Tan, F. R.; Tan, H. R.; Saidaminov, M. I.; Wei, M. Y.; Liu, M. X.; Mei, A. Y.; Li, P. C.; Zhang, B. W.; Tan, C. S.; Gong, X. W. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 2019, 31, 1807435.

159

Zhu, H. W.; Liu, Y. H.; Eickemeyer, F. T.; Pan, L. F.; Ren, D.; Ruiz-Preciado, M. A.; Carlsen, B.; Yang, B. W.; Dong, X. F.; Wang, Z. W. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 2020, 32, 1907757.

160

Liang, L. S.; Luo, H. T.; Hu, J. J.; Li, H.; Gao, P. Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 2020, 10, 2000197.

161

Lim, K. G.; Kim, H. B.; Jeong, J.; Kim, H.; Kim, J. Y.; Lee, T. W. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 2014, 26, 6461-6466.

162

Cha, M. Y.; Da, P. M.; Wang, J.; Wang, W. Y.; Chen, Z. H.; Xiu, F. X.; Zheng, G. F.; Wang, Z. S. Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots. J. Am. Chem. Soc. 2016, 138, 8581-8587.

163

Bian, H.; Bai, D. L.; Jin, Z. W.; Wang, K.; Liang, L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Graded bandgap CsPbI2+XBr1−X perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2018, 2, 1500-1510.

164

Zhang, J. R.; Jin, Z. W.; Liang, L.; Wang, H. R.; Bai, D. L.; Bian, H.; Wang, K.; Wang, Q.; Yuan, N. Y.; Ding, J. N. et al. Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%. Adv. Sci. 2018, 5, 1801123.

165

Liu, Z. H.; Qiu, L. B.; Ono, L. K.; He, S. S.; Hu, Z. H.; Jiang, M. W.; Tong, G. Q.; Wu, Z. F.; Jiang, Y.; Son, D. Y. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability. Nat. Energy 2020, 5, 596-604.

166

Zardari, P.; Rostami, A.; Shekaari, H. p-phenylenediaminium iodide capping agent enabled self-healing perovskite solar cell. Sci. Rep. 2020, 10, 20011.

167

Yang, C.; Wang, Z. J.; Lv, Y. H.; Yuan, R. H.; Wu, Y. H.; Zhang, W. H. Colloidal CsCu5S3 nanocrystals as an interlayer in high-performance perovskite solar cells with an efficiency of 22.29%. Chem. Eng. J. 2021, 406, 126855.

168

Leo, K. Signs of stability. Nat. Nanotechnol. 2015, 10, 574-575.

169

Song, Z. N.; Abate, A.; Watthage, S. C.; Liyanage, G. K.; Phillips, A. B.; Steiner, U.; Graetzel, M.; Heben, M. J. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 2016, 6, 1600846.

170

Zheng, X. J.; Wu, C. C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 2016, 1, 1014-1020.

171

Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286-293.

172

Chen, Y. N.; Sun, Y.; Peng, J. J.; Zhang, W.; Su, X. J.; Zheng, K. B.; Pullerits, T.; Liang, Z. Q. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 2017, 7, 1700162.

173

Zhang, X. Q.; Wu, G.; Fu, W. F.; Qin, M. C.; Yang, W. T.; Yan, J. L.; Zhang, Z. Q.; Lu, X. H.; Chen, H. Z. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 2018, 8, 1702498.

174

Etgar, L. The merit of perovskite's dimensionality; can this replace the 3D halide perovskite? Energy Environ. Sci. 2018, 11, 234-242.

175

Chen, Y. N.; Sun, Y.; Peng, J. J.; Tang, J. H.; Zheng, K. B.; Liang, Z. Q. 2D ruddlesden-popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487.

176

Li, F. M.; Xie, Y. R.; Hu, Y. C.; Long, M. Z.; Zhang, Y. F.; Xu, J. B.; Qin, M. C.; Lu, X. H.; Liu, M. Z. Effects of alkyl chain length on crystal growth and oxidation process of two-dimensional tin halide perovskites. ACS Energy Lett. 2020, 5, 1422-1429.

177

Li, F. M.; Pei, Y. H.; Xiao, F.; Zeng, T. X.; Yang, Z.; Xu, J. J.; Sun, J.; Peng, B.; Liu, M. Z. Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites. Nanoscale 2018, 10, 6318-6322.

178

Chen, J. Z.; Seo, J. Y.; Park, N. G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface. Adv. Energy Mater. 2018, 8, 1702714.

179

Hu, J.; Wang, C.; Qiu, S.; Zhao, Y.; Gu, E.; Zeng, L.; Yang, Y.; Li, C.; Liu, X.; Forberich, K. et al. Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000173.

180

Wygant, B. R.; Ye, A. Z.; Dolocan, A.; Vu, Q.; Abbot, D. M.; Mullins, C. B. Probing the degradation chemistry and enhanced stability of 2D organolead halide perovskites. J. Am. Chem. Soc. 2019, 141, 18170-18181.

181

Yang, J. M.; Xiong, S. B.; Song, J. N.; Wu, H. B.; Zeng, Y. H.; Lu, L. Y.; Shen, K. C.; Hao, T. Y.; Ma, Z. F.; Liu, F. et al. Energetics and energy loss in 2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000687.

182

Wang, F.; Geng, W.; Zhou, Y.; Fang, H. H.; Tong, C. J.; Loi, M. A.; Liu, L. M.; Zhao, N. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 2016, 28, 9986-9992.

183

Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M. Q.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

184

Cho, K. T.; Grancini, G.; Lee, Y.; Oveisi, E.; Ryu, J.; Almora, O.; Tschumi, M.; Schouwink, P. A.; Seo, G.; Heo, S. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 2018, 11, 952-959.

185

Lin, Y.; Bai, Y.; Fang, Y. J.; Chen, Z. L.; Yang, S.; Zheng, X. P.; Tang, S.; Liu, Y.; Zhao, J. J.; Huang, J. S. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 2018, 9, 654-658.

186

He, Q. Q.; Worku, M.; Xu, L. J.; Zhou, C. K.; Lteif, S.; Schlenoff, J. B.; Ma, B. W. Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells. J. Mater. Chem. A 2020, 8, 2039-2046.

187

Kim, H.; Pei, M. Y.; Lee, Y.; Sutanto, A. A.; Paek, S.; Queloz, V. I. E.; Huckaba, A. J.; Cho, K. T.; Yun, H. J.; Yang, H. et al. Self-crystallized multifunctional 2D perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1910620.

188

Liu, G. Z.; Zheng, H. Y.; Xu, H. F.; Zhang, L. Y.; Xu, X. X.; Xu, S. D.; Pan, X. Interface passivation treatment by halogenated low- dimensional perovskites for high-performance and stable perovskite photovoltaics. Nano Energy 2020, 73, 104753.

189

Zhuang, J.; Mao, P.; Luan, Y. G.; Yi, X. H.; Tu, Z. Y.; Zhang, Y. Y.; Yi, Y. P.; Wei, Y. Z.; Chen, N. L.; Lin, T. et al. Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 2019, 4, 2913-2921.

190

Mahmud, M. A.; Duong, T.; Yin, Y. T.; Pham, H. T.; Walter, D.; Peng, J.; Wu, Y. L.; Li, L.; Shen, H. P.; Wu, N. D. et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1907962.

191

Wang, T.; Cheng, Z. D.; Zhou, Y. L.; Liu, H.; Shen, W. Z. Highly efficient and stable perovskite solar cells via bilateral passivation layers. J. Mater. Chem. A 2019, 7, 21730-21739.

192

Capasso, A.; Matteocci, F.; Najafi, L.; Prato, M.; Buha, J.; Cinà, L.; Pellegrini, V.; Di Carlo, A.; Bonaccorso, F. Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 2016, 6, 1600920.

193

Luo, H.; Lin, X. H.; Hou, X.; Pan, L. K.; Huang, S. M.; Chen, X. H. Efficient and air-stable planar perovskite solar cells formed on graphene- oxide-modified PEDOT: PSS hole transport layer. Nano-Micro Lett. 2017, 9, 39.

194

Duan, C. H.; Liu, Z. D.; Yuan, L. G.; Zhu, H. P.; Luo, H. M.; Yan, K. Y. PEDOT: PSS-metal oxide composite electrode with regulated wettability and work function for high-performance inverted perovskite solar cells. Adv. Opt. Mater. 2020, 8, 2000216.

195

Liu, X. X.; Li, B. C.; Zhang, N. D.; Yu, Z. M.; Sun, K.; Tang, B. S.; Shi, D. W.; Yao, H. Y.; Ouyang, J. Y.; Gong, H. Multifunctional RbCl dopants for efficient inverted planar perovskite solar cell with ultra-high fill factor, negligible hysteresis and improved stability. Nano Energy 2018, 53, 567-578.

196

Li, Z. J.; Jo, B. H.; Hwang, S. J.; Kim, T. H.; Somasundaram, S.; Kamaraj, E.; Bang, J.; Ahn, T. K.; Park, S.; Park, H. J. Bifacial passivation of organic hole transport interlayer for NiOx-based p-i-n perovskite solar cells. Adv. Sci. 2019, 6, 1802163.

197

Xie, L. S.; Cao, Z. Y.; Wang, J. W.; Wang, A. L.; Wang, S. R.; Cui, Y. Y.; Xiang, Y.; Niu, X. B.; Hao, F.; Ding, L. M. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy 2020, 74, 104846.

198

Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153-161.

Nano Research
Pages 85-103
Cite this article:
Yu W, Sun X, Xiao M, et al. Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15(1): 85-103. https://doi.org/10.1007/s12274-021-3488-7
Topics:

991

Views

76

Crossref

72

Web of Science

69

Scopus

5

CSCD

Altmetrics

Received: 01 February 2021
Revised: 24 March 2021
Accepted: 30 March 2021
Published: 25 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return