AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible multi-level quasi-volatile memory based on organic vertical transistor

Huihuang Yang1,2,§Qian Yang1,2,3,§Lihua He1Xiaomin Wu1Changsong Gao1Xianghong Zhang1Liuting Shan1Huipeng Chen1,2 ( )Tailiang Guo1,2
Institute of Optoelectronic Display National & Local United Engineering Lab of Flat Panel Display Technology Fuzhou UniversityFuzhou 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou 350100 China
Zhicheng College Fuzhou UniversityFuzhou 350002 China

§ Huihuang Yang and Qian Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Driven by important megatrends such as cloud computing, artificial intelligence, and the Internet of Things, as a device used to store programs and data in computing systems, memory is struggling to catch up with the explosive growth of data and bandwidth requirements in the system. However, the "storage wall" between non-volatile memory and volatile memory retards the further improvement of modern memory computing systems. Herein, a quasi-volatile transistor memory based on organic polymer/perovskite quantum dot blend was fabricated using the vertical transistor configuration. Contributing to vertical structure and appropriate doping ratio of blend film, the quasi-volatile memory device displayed 1, 560 times longer data retention time (> 100 s) with respect to the dynamic random access memory and fast data programming speed (20 μs) in which was far more quickly than that of other organic non-volatile memories to fill the gap between volatile and non-volatile memories. Moreover, the device retention characteristics could be further promoted under the photoelectric synergistic stimulation, which also provided the possibility to reduce electric writing condition. Furthermore, the quasi-volatile memory device showed good electrical performance under bending conditions. This work provides a simple solution to fabricate multi-level quasi-volatile memory, which opens up a whole new avenue of "universal memory" and lays a solid foundation for low power and flexible random access memory devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3489_MOESM1_ESM.pdf (2.7 MB)

References

1

Thompson, J.; Ge, X. H.; Wu, H. C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G wireless communication systems: Prospects and challenges [Guest Editorial]. IEEE Commun. Mag. 2014, 52, 62–64.

2

Thrall, J. H.; Li, X.; Li, Q. Z.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 2018, 15, 504–508.

3
McKee, S. A.; Wisniewski, R. W. Memory wall. In Encyclopedia of Parallel Computing. Padua, D., Ed.; Springer: Boston, 2011; pp. 1110–1116.https://doi.org/10.1007/978-0-387-09766-4_234
4

Lee, J.; Pak, S.; Lee, Y. W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H. S.; Morris, S. M.; Sohn, J. I.; Cha, S. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 2017, 8, 14734.

5

Seevinck, E.; List, F. J.; Lohstroh, J. Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits 1987, 22, 748–754.

6

Chun, K. C.; Jain, P.; Kim, T. H.; Kim, C. H. A 667 MHz logic- compatible embedded DRAM featuring an asymmetric 2T gain cell for high speed on-die caches. IEEE J. Solid-State Circuits 2012, 47, 547–559.

7

Jung, T. S.; Choi, Y. J.; Suh, K. D.; Suh, B. H.; Kim, J. K.; Lim, Y. H.; Koh, Y. N.; Park, J. W.; Lee, K. J.; Park, J. H. et al. A 117-mm2 3.3-V only 128-Mb multilevel NAND flash memory for mass storage applications. IEEE J. Solid-State Circuits 1996, 31, 1575–1583.

8

Zheng, C. Y.; Liao, Y.; Han, S. T.; Zhou, Y. Interface modification in three-terminal organic memory and synaptic device. Adv. Electron. Mater. 2020, 6, 2000641.

9

Xu, T.; Guo, S. X.; Qi, W. H.; Li, S. Z.; Xu, M. L.; Wang, W. Organic transistor nonvolatile memory with three-level information storage and optical detection functions. ACS Appl. Mater. Interfaces 2020, 12, 21952–21960.

10

Qu, T. Y.; Sun, Y.; Chen, M. L.; Liu, Z. B.; Zhu, Q. B.; Wang, B. W.; Zhao, T. Y.; Liu, C.; Tan, J.; Qiu, S. et al. A flexible carbon nanotube sen-memory device. Adv. Mater. 2020, 32, 1907288.

11

Hu, D. B.; Wang, X. M.; Chen, H. P.; Guo, T. L. High performance flexible nonvolatile memory based on vertical organic thin film transistor. Adv. Funct. Mater. 2017, 27, 1703541.

12

Wu, X. M.; Lan, S. Q.; Hu, D. B.; Chen, Q. Z.; Li, E. L.; Yan, Y. J.; Chen, H. P.; Guo, T. L. High performance flexible multilevel optical memory based on a vertical organic field effect transistor with ultrashort channel length. J. Mater. Chem. C 2019, 7, 9229–9240.

13

Lan, S. Q.; Zhong, J. F.; Li, E. L.; Yan, Y. J.; Wu, X. M.; Chen, Q. Z.; Lin, W. K.; Chen, H. P.; Guo, T. L. High-performance nonvolatile organic photoelectronic transistor memory based on bulk heterojunction structure. ACS Appl. Mater. Interfaces 2020, 12, 31716–31724.

14

Wulf, W. A.; McKee, S. A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995, 23, 20–24.

15

Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

16

Yoshida, E.; Tanaka, T. A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory. IEEE Trans. Electron Devices 2006, 53, 692–697.

17

Zhou, Z. M.; Fossum, J. G.; Lu, Z. C. Physical insights on BJT-based 1T DRAM cells. IEEE Electron Device Lett. 2009, 30, 565–567.

18

Kupke, S.; Knebel, S.; Schroeder, U.; Schmelzer, S.; Bottger, U.; Mikolajick, T. Reliability of SrRuO3/SrTiO3/SrRuO3 stacks for DRAM applications. IEEE Electron Device Lett. 2012, 33, 1699–1701.

19

Lee, M. J.; Park, K. W. A mechanism for dependence of refresh time on data pattern in DRAM. IEEE Electron Device Lett. 2010, 31, 168–170.

20

Gong, Y. H.; Chung, S. W. Exploiting refresh effect of DRAM read operations: A practical approach to low-power refresh. IEEE Trans. Comput. 2016, 65, 1507–1517.

21

Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

22

Gundapaneni, S.; Ganguly, S.; Kottantharayil, A. Bulk planar junctionless transistor (BPJLT): An attractive device alternative for scaling. IEEE Electron Device Lett. 2011, 32, 261–263.

23

Hou, X.; Chen, H. W.; Zhang, Z. H.; Wang, S. Y.; Zhou, P. 2D atomic crystals: A promising solution for next-generation data storage. Adv. Electron. Mater. 2019, 5, 1800944.

24

Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

25

Zhang, P.; Yi, M. D.; Huang, L. Y.; Shi, W.; Zhu, J. T.; Huang, W. Improvement of memory characteristics for an organic charge trapping memory by introduction of PS tunneling layer. Org. Electron. 2020, 87, 105967.

26

Zheng, C. Y.; Tong, T.; Hu, Y. M.; Gu, Y. M.; Wu, H. R.; Wu, D. Q.; Meng, H.; Yi, M. D.; Ma, J.; Gao, D. Q. et al. Charge-storage aromatic amino compounds for nonvolatile organic transistor memory devices. Small 2018, 14, 1800756.

27

Yang, H. H.; Liu, Y. Q.; Wu, X. M.; Yan, Y. J.; Wang, X. M.; Lan, S. Q.; Zhang, G. C.; Chen, H. P.; Guo, T. L. High-performance all-inorganic perovskite-quantum-dot-based flexible organic phototransistor memory with architecture design. Adv. Electron. Mater. 2019, 5, 1900864.

28

Hwang, S. K.; Bae, I.; Kim, R. H.; Park, C. Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv. Mater. 2012, 24, 5910–5914.

29

Mukherjee, B.; Zulkefli, A.; Watanabe, K.; Taniguchi, T.; Wakayama, Y.; Nakaharai, S. Laser-assisted multilevel non-volatile memory device based on 2D van-der-waals few-layer-ReS2/h-BN/Graphene heterostructures. Adv. Funct. Mater. 2020, 30, 2001688.

30

Yang, H. H.; Yan, Y. J.; Wu, X. M.; Liu, Y. Q.; Chen, Q. Z.; Zhang, G. C.; Chen, S. M.; Chen, H. P.; Guo, T. L. A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J. Mater. Chem. C 2020, 8, 2861–2869.

31

Yoo, E. J.; Lyu, M.; Yun, J. H.; Kang, C. J.; Choi, Y. J.; Wang, L. Z. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3–xClx perovskite for resistive random access memory devices. Adv. Mater. 2015, 27, 6170–6175.

32

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

33

Li, E. L.; Lin, W. K.; Yan, Y. J.; Yang, H. H.; Wang, X. M.; Chen, Q. Z.; Lv, D. X.; Chen, G. X.; Chen, H. P.; Guo, T. L. Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 2019, 11, 46008–46016.

34

Yu, R. J.; Li, E. L.; Wu, X. M.; Yan, Y. J.; He, W. X.; He, L. H.; Chen, J. W.; Chen, H. P.; Guo, T. L. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 15446–15455.

35

Mao, J. Y.; Zheng, Z.; Xiong, Z. Y.; Huang, P.; Ding, G. L.; Wang, R. P.; Wang, Z. P.; Yang, J. Q.; Zhou, Y.; Zhai, T. Y. et al. Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 2020, 71, 104616.

36

Ding, Y.; Liu, L.; Li, J. Y.; Cao, R. R.; Jiang, Y. G.; Liu, C. S.; Liu, Q.; Zhou, P. A semi-floating memory with 535% enhancement of refresh time by local field modulation. Adv. Funct. Mater. 2020, 30, 1908089.

37

Kshirsagar, C. U.; Xu, W. C.; Su, Y.; Robbins, M. C.; Kim, C. H.; Koester, S. J. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 2016, 10, 8457–8464.

38

Yang, K.; Liu, H. X.; Wang, S. L.; Yu, W. L.; Han, T. Comprehensive performance quasi-non-volatile memory compatible with large-scale preparation by chemical vapor deposition. Nanomaterials 2020, 10, 1471.

39

Chen, H. J.; Guo, Y. L.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H. T.; Liu, Y. Q. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622.

40

Liu, D. J.; Lin, Q. Q.; Zang, Z. G.; Wang, M.; Wangyang, P. H.; Tang, X. S.; Zhou, M.; Hu, W. Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces 2017, 9, 6171–6176.

41

Chen, J. S.; Liu, D. Z.; Al-Marri, M. J.; Nuuttila, L.; Lehtivuori, H.; Zheng, K. B. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci. China Mater. 2016, 59, 719–727.

42

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

43

Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.

44

Cottingham, P.; Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246– 5249.

45

Zheng, C.; Bi, C. H.; Huang, F.; Binks, D.; Tian, J. J. Stable and strong emission CsPbBr3 quantum dots by surface engineering for high-performance optoelectronic films. ACS Appl. Mater. Interfaces 2019, 11, 25410–25416.

46

Peng, B. Y.; Cao, K.; Lau, A. H. Y.; Chen, M.; Lu, Y.; Chan, P. K. L. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv. Mater. 2020, 32, 2002281.

47

Yue, D. W.; Kim, C.; Lee, K. Y.; Yoo, W. J. Ohmic contact in 2D semiconductors via the formation of a benzyl viologen interlayer. Adv. Funct. Mater. 2019, 29, 1807338.

48

Liao, M. Y.; Chiang, Y. C.; Chen, C. H.; Chen, W. C.; Chueh, C. C. Two-dimensional Cs2Pb(SCN)2Br2-Based photomemory devices showing a photoinduced recovery behavior and an unusual fully optically driven memory behavior. ACS Appl. Mater. Interfaces 2020, 12, 36398–36408.

49

He, Y. L.; Nie, S.; Liu, R.; Jiang, S. S.; Shi, Y.; Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 2019, 31, 1900903.

50

Yi, M. D.; Xie, M.; Shao, Y. Q.; Li, W.; Ling, H. F.; Xie, L. H.; Yang, T.; Fan, Q. L.; Zhu, J. L.; Huang, W. Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. J. Mater. Chem. C 2015, 3, 5220–5225.

51

Pei, K.; Ren, X. C.; Zhou, Z. W.; Zhang, Z. C.; Ji, X. D.; Chan, P. K. L. A high-performance optical memory array based on inhomogeneity of organic semiconductors. Adv. Mater. 2018, 30, 1706647.

52

Shi, N. E.; Liu, D.; Jin, X. L.; Wu, W. D.; Zhang, J.; Yi, M. D.; Xie, L. H.; Guo, F. N.; Yang, L.; Ou, C. J. et al. Floating-gate nanofibrous electret arrays for high performance nonvolatile organic transistor memory devices. Org. Electron. 2017, 49, 218–225.

53

Wang, Y.; Yang, J.; Ye, W. B.; She, D. H.; Chen, J. R.; Lv, Z. Y.; Roy, V. A. L.; Li, H. L.; Zhou, K.; Yang, Q. et al. Near-infrared-irradiation- mediated synaptic behavior from tunable charge-trapping dynamics. Adv. Electron. Mater. 2020, 6, 1900765.

54

Chiu, Y. C.; Sun, H. S.; Lee, W. Y.; Halila, S.; Borsali, R.; Chen, W. C. Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv. Mater. 2015, 27, 6257–6264.

55

Zhu, J. Y.; Xie, Z. F.; Sun, X. K.; Zhang, S. Y.; Pan, G. C.; Zhu, Y. S.; Dong, B.; Bai, X.; Zhang, H. Z.; Song, H. W. Highly efficient and stable inorganic perovskite quantum dots by embedding into a polymer matrix. Chemnanomat 2019, 5, 346–351.

56

Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.

57

Leng, M. Y.; Chen, Z. W.; Yang, Y.; Li, Z.; Zeng, K.; Li, K. H.; Niu, G. D.; He, Y. S.; Zhou, Q. C.; Tang, J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem., Int. Ed. 2016, 55, 15012–15016.

58

Lv, W. Z.; Li, L.; Xu, M. C.; Hong, J. X.; Tang, X. X.; Xu, L. G.; Wu, Y. H.; Zhu, R.; Chen, R. F.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 2019, 31, 1900682.

59

Kim, T.; Lim, J. W.; Yun, S. J.; Lee, S. H.; Jung, K. H. Multi-level long-term memory resembling human memory based on photosensitive field-effect transistors with stable interfacial deep traps. Adv. Electron. Mater. 2020, 6, 1901044.

60

Debucquoy, M.; Rockele, M.; Genoe, J.; Gelinck, G. H.; Heremans, P. Charge trapping in organic transistor memories: On the role of electrons and holes. Org. Electron. 2009, 10, 1252–1258.

61

Kraft, U.; Zschieschang, U.; Ante, F.; Kälblein, D.; Kamella, C.; Amsharov, K.; Jansen, M.; Kern, K.; Weber, E.; Klauk, H. Fluoroalkylphosphonic acid self-assembled monolayer gate dielectrics for threshold-voltage control in low-voltage organic thin-film transistors. J. Mater. Chem. 2010, 20, 6416–6418.

62

Li, Q. K.; Bi, S.; Asare-Yeboah, K.; Na, J.; Liu, Y.; Jiang, C. M.; Song, J. H. High performance vertical resonant photo-effect-transistor with an all-around OLED-gate for ultra-electromagnetic stability. ACS Nano 2019, 13, 8425–8432.

63

Larrieu, G.; Han, X. L. Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 2013, 5, 2437–2441.

64

Feng, G. D.; Jiang, J.; Zhao, Y. H.; Wang, S. T.; Liu, B.; Yin, K.; Niu, D. M.; Li, X. H.; Chen, Y. Q.; Duan, H. G. et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv. Mater. 2020, 32, 1906171.

65

Gao, H. K.; Liu, J. Y.; Qin, Z. S.; Wang, T. Y.; Gao, C.; Dong, H. L.; Hu, W. P. High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. Nanoscale 2020, 12, 18371–18378.

66

Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei, Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.

Nano Research
Pages 386-394
Cite this article:
Yang H, Yang Q, He L, et al. Flexible multi-level quasi-volatile memory based on organic vertical transistor. Nano Research, 2022, 15(1): 386-394. https://doi.org/10.1007/s12274-021-3489-6
Topics:

1094

Views

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 23 February 2021
Revised: 21 March 2021
Accepted: 30 March 2021
Published: 09 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return