AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications

Kyowon Kang§Jaejin Park§Kiho Kim§Ki Jun Yu( )
School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea

§ Kyowon Kang, Jaejin Park, and Kiho Kim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Recently, flexible pressure sensors have gained substantial research interest in bioelectronics because they can monitor the conditions of various organs, enable early diagnosis of diseases, and provide precise medical treatment by applying them to various parts of the body. In particular, inorganic materials, metal and carbon-based materials are broadly used in novel structured pressure sensors from wearable devices to implantable devices. With the excellent electronic properties, distinctive morphologies, and remarkable mechanical and chemical stability of these materials, it is expected that these flexible pressure sensors can be the basis for new methods for human healthcare. This article covers an extensive review of the inorganic, metal and carbon-based flexible pressure sensor design strategies and sensing mechanisms studied in recent years for diverse applications such as tactile sensors, arterial pulse sensors, intracranial pressure sensors, intraocular pressure sensors, and bladder pressure sensors. Each section provides an overview by introducing the recent progress in flexible pressure sensors.

References

[1]
Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. N. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.
[2]
Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y. X.; Pham, H. N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D. M.; Khine, M. J. N. Respiration rate and volume measurements using wearable strain sensors. npj Digital Med. 2019, 2, 8.
[3]
Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143-1150.
[4]
Luo, N. Q.; Dai, W. X.; Li, C. L.; Zhou, Z. Q.; Lu, L. Y.; Poon, C. C. Y.; Chen, S. C.; Zhang, Y. T.; Zhao, N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26, 1178-1187.
[5]
Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346-2354.
[6]
Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. N. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314-321.
[7]
Huang, W. J.; Dai, K.; Zhai, Y.; Liu, H.; Zhan, P. F.; Gao, J. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 2017, 9, 42266-42277.
[8]
Jeong, Y.; Park, J.; Lee, J.; Kim, K.; Park, I. Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its biomedical application. ACS Sens. 2020, 5, 481-489.
[9]
Nathan, A.; Ahnood, A.; Cole, M. T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486-1517.
[10]
Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897-1916.
[11]
MacDonald, W. A.; Looney, M. K.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest advances in substrates for flexible electronics. J. Soc. Inf. Dis. 2007, 15, 1075-1083.
[12]
Song, K. I.; Seo, H.; Seong, D.; Kim, S.; Yu, K. J.; Kim, Y. C.; Kim, J.; Kwon, S. J.; Han, H. S.; Youn, I. et al. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 2020, 11, 4195.
[13]
Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.
[14]
Mishra, S.; Kim, Y. S.; Intarasirisawat, J.; Kwon, Y. T.; Lee, Y.; Mahmood, M.; Lim, H. R.; Herbert, R.; Yu, K. J.; Ang, C. S. et al. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 2020, 6, eaay1729.
[15]
Song, E. M.; Chiang, C. H.; Li, R.; Jin, X.; Zhao, J. N.; Hill, M.; Xia, Y.; Li, L. Z.; Huang, Y. M.; Won, S. M. et al. Flexible electronic/ optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA 2019, 116, 15398-15406.
[16]
Chun, S.; Kim, D. W.; Kim, J.; Pang, C. A transparent, glue-free, skin-attachable graphene pressure sensor with micropillars for skin-elasticity measurement. Nanotechnology 2019, 30, 335501.
[17]
Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 2018, 4, eaas8772.
[18]
Song, E. M.; Li, R.; Jin, X.; Du, H. N.; Huang, Y. M.; Zhang, J. Z.; Xia, Y.; Fang, H.; Lee, Y. K.; Yu, K. J. et al. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 2018, 12, 10317-10326.
[19]
Yu, K. J.; Yan, Z.; Han, M. D.; Rogers, J. A. Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex. Electron. 2017, 1, 4.
[20]
Kim, S.; Amjadi, M.; Lee, T. I.; Jeong, Y.; Kwon, D.; Kim, M. S.; Kim, K.; Kim, T. S.; Oh, Y. S.; Park, I. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 2019, 11, 23639-23648.
[21]
Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241-245.
[22]
Hyun, J. K.; Zhang, S. X.; Lauhon, L. J. Nanowire heterostructures. Ann. Rev. Mater. Res. 2013, 43, 451-479.
[23]
Cohen-Karni, T.; Lieber, C. M. Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of biology. Pure Appl. Chem. 2013, 85, 883-901.
[24]
Koh, W. K.; Saudari, S. R.; Fafarman, A. T.; Kagan, C. R.; Murray, C. B. Thiocyanate-capped PbS nanocubes: Ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Lett. 2011, 11, 4764-4767.
[25]
Son, J. S.; Lee, J. S.; Shevchenko, E. V.; Talapin, D. V. Magnet-in-the-semiconductor nanomaterials: High electron mobility in all-inorganic arrays of FePt/CdSe and FePt/CdS core-shell heterostructures. J. Phys. Chem. Lett. 2013, 4, 1918-1923.
[26]
Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45-53.
[27]
Fang, H.; Zhao, J. N.; Yu, K. J.; Song, E. M.; Farimani, A. B.; Chiang, C. H.; Jin, X.; Xue, Y. G.; Xu, D.; Du, W. B. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. USA 2016, 113, 11682-11687.
[28]
Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348-352.
[29]
Dutta, P.; Rathi, M.; Zheng, N.; Gao, Y.; Yao, Y.; Martinez, J.; Ahrenkiel, P.; Selvamanickam, V. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2014, 105, 092104.
[30]
Viventi, J.; Kim, D. H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. W.; Vanleer, A. C. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599-1605.
[31]
Xu, L. Z.; Gutbrod, S. R.; Bonifas, A. P.; Su, Y. W.; Sulkin, M. S.; Lu, N. S.; Chung, H. J.; Jang, K. I.; Liu, Z. J.; Ying, M. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 2014, 5, 3329.
[32]
Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y. S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.
[33]
Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308.
[34]
Zhu, B. W.; Ling, Y. Z.; Yap, L. W.; Yang, M. J.; Lin, F. G.; Gong, S.; Wang, Y.; An, T. C.; Zhao, Y. M.; Cheng, W. L. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl. Mater. Interfaces 2019, 11, 29014-29021.
[35]
Li, X.; Fan, Y. J.; Li, H. Y.; Cao, J. W.; Xiao, Y. C.; Wang, Y.; Liang, F.; Wang, H. L.; Jiang, Y.; Wang, Z. L. et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 2020, 14, 9605-9612.
[36]
Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338-4372.
[37]
Xu, K. C.; Lu, Y. Y.; Takei, K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 2019, 4, 1800628.
[38]
Joung, Y. H. Development of implantable medical devices: From an engineering perspective. Int. Neurourol. J. 2013, 17, 98-106.
[39]
Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 2014, 26, 149-162.
[40]
Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. A. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997-6038.
[41]
Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. A. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-864.
[42]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[43]
Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966-9970.
[44]
Lam Po Tang, S. Recent developments in flexible wearable electronics for monitoring applications. Trans. Inst. Meas. Control 2007, 29, 283-300.
[45]
Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 2015, 7, 6208-6215.
[46]
Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034-25042.
[47]
Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.
[48]
Lee, D.; Lee, H.; Jeong, Y.; Ahn, Y.; Nam, G.; Lee, Y. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles. Adv. Mater. 2016, 28, 9364-9369.
[49]
Xu, M. G.; Reekie, L.; Chow, Y. T.; Dakin, J. P. Optical in-fibre grating high pressure sensor. Electron. Lett. 1993, 29, 398-399.
[50]
Totsu, K.; Haga, Y.; Esashi, M. Ultra-miniature fiber-optic pressure sensor using white light interferometry. J. Micromech. Microeng. 2005, 15, 71-75.
[51]
Zhu, Y. Z.; Wang, A. B. Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett. 2005, 17, 447-449.
[52]
Yu, Q. X.; Zhou, X. L. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 2011, 1, 72-83.
[53]
Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0038.
[54]
Song, E. M.; Fang, H.; Jin, X.; Zhao, J. N.; Jiang, C. S.; Yu, K. J.; Zhong, Y. D.; Xu, D.; Li, J. H.; Fang, G. H. et al. Thin, transferred layers of silicon dioxide and silicon nitride as water and ion barriers for implantable flexible electronic systems. Adv. Electron. Mater. 2017, 3, 1700077.
[55]
Yin, M.; Borton, D. A.; Aceros, J.; Patterson, W. R.; Nurmikko, A. V. A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 115-128.
[56]
Bazaka, K.; Jacob, M. V. Implantable devices: Issues and challenges. Electronics 2013, 2, 1-34.
[57]
Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542-E9549.
[58]
Li, J. H.; Li, R.; Chiang, C. H.; Zhong, Y. S.; Shen, H. X.; Song, E. M.; Hill, M.; Won, S. M.; Yu, K. J.; Baek, J. M. et al. Ultrathin, high capacitance capping layers for silicon electronics with conductive interconnects in flexible, long-lived bioimplants. Adv. Mater. Technol. 2020, 5, 1900800.
[59]
Kang, K.; Cho, Y.; Yu, K. J. Novel Nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines 2018, 9, 263.
[60]
Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37-46.
[61]
Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71-76.
[62]
Yang, Q. S.; Lee, S.; Xue, Y. G.; Yan, Y.; Liu, T. L.; Kang, S. K.; Lee, Y. J.; Lee, S. H.; Seo, M. H.; Lu, D. et al. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv. Funct. Mater. 2020, 30, 1910718.
[63]
Lu, D.; Yan, Y.; Deng, Y. J.; Yang, Q. S.; Zhao, J.; Seo, M. H.; Bai, W. B.; MacEwan, M. R.; Huang, Y. G.; Ray, W. Z. et al. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 2020, 30, 2003754.
[64]
Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782-791.
[65]
Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905-3911.
[66]
Hwang, S. W.; Kim, D. H.; Tao, H.; Kim, T. I.; Kim, S.; Yu, K. J.; Panilaitis, B.; Jeong, J. W.; Song, J. K.; Omenetto, F. G. et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Funct. Mater. 2013, 23, 4087-4093.
[67]
Lu, L. Y.; Yang, Z. J.; Meacham, K.; Cvetkovic, C.; Corbin, E. A.; Vázquez-Guardado, A.; Xue, M. T.; Yin, L.; Boroumand, J.; Pakeltis, G. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 2018, 8, 1703035.
[68]
Zheng, Q.; Zou, Y.; Zhang, Y. L.; Liu, Z.; Shi, B. J.; Wang, X. X.; Jin, Y. M.; Ouyang, H.; Li, Z.; Wang, Z. L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478.
[69]
Li, Y. L.; Maciel, D.; Rodrigues, J.; Shi, X. Y.; Tomás, H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev. 2015, 115, 8564-8608.
[70]
Park, J.; Kim, J. K.; Patil, S. J.; Park, J. K.; Park, S. A.; Lee, D. W. A wireless pressure sensor integrated with a biodegradable polymer stent for biomedical applications. Sensors 2016, 16, 809.
[71]
Hosseini, E. S.; Manjakkal, L.; Shakthivel, D.; Dahiya, R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl. Mater. Interfaces 2020, 12, 9008-9016.
[72]
Choi, Y. S.; Koo, J.; Lee, Y. J.; Lee, G.; Avila, R.; Ying, H. Z.; Reeder, J.; Hambitzer, L.; Im, K.; Kim, J. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 2020, 30, 2000941.
[73]
Koo, J.; MacEwan, M. R.; Kang, S. K.; Won, S. M.; Stephen, M.; Gamble, P.; Xie, Z. Q.; Yan, Y.; Chen, Y. Y.; Shin, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830-1836.
[74]
Lee, Y. K.; Yu, K. J.; Song, E.; Barati Farimani, A.; Vitale, F.; Xie, Z. Q.; Yoon, Y.; Kim, Y.; Richardson, A.; Luan, H. W. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 2017, 11, 12562-12572.
[75]
Li, C. Y.; Wu, P. M.; Shutter, L. A.; Narayan, R. K. Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement. Appl. Phys. Lett. 2010, 96, 053502.
[76]
Warty, R.; Tofighi, M. R.; Kawoos, U.; Rosen, A. Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom. IEEE Trans. Microw. Theory Tech. 2008, 56, 2366-2376.
[77]
Won, S. M.; Wang, H. L.; Kim, B. H.; Lee, K.; Jang, H.; Kwon, K.; Han, M. D.; Crawford, K. E.; Li, H. B.; Lee, Y. C. et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019, 13, 10972-10979.
[78]
Yang, S. X.; Lu, N. S. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 2013, 13, 8577-8594.
[79]
Ying, M.; Bonifas, A. P.; Lu, N. S.; Su, Y. W.; Li, R.; Cheng, H. Y.; Ameen, A.; Huang, Y. G.; Rogers, J. A. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012, 23, 344004.
[80]
Lee, Y. K.; Yu, K. J.; Kim, Y.; Yoon, Y.; Xie, Z. Q.; Song, E. M.; Luan, H. W.; Feng, X.; Huang, Y. G.; Rogers, J. A. Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems. ACS Appl. Mater. Interfaces 2017, 9, 42633-42638.
[81]
Lee, S. P.; Ha, G.; Wright, D. E.; Ma, Y. J.; Sen-Gupta, E.; Haubrich, N. R.; Branche, P. C.; Li, W. H.; Huppert, G. L.; Johnson, M. et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. npj Digital Med. 2018, 1, 2.
[82]
Won, S. M.; Song, E. M.; Zhao, J. N.; Li, J. H.; Rivnay, J.; Rogers, J. A. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 2018, 30, 1800534.
[83]
Lee, S.; Inoue, Y.; Kim, D.; Reuveny, A.; Kuribara, K.; Yokota, T.; Reeder, J.; Sekino, M.; Sekitani, T.; Abe, Y. et al. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel. Nat. Commun. 2014, 5, 5898.
[84]
Krishnan, S. R.; Ray, T. R.; Ayer, A. B.; Ma, Y. J.; Gutruf, P.; Lee, K. H.; Lee, J. Y.; Wei, C.; Feng, X.; Ng, B. et al. Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Sci. Trans. Med. 2018, 10, eaat8437.
[85]
Kim, J. H.; Kim, S. R.; Kil, H. J.; Kim, Y. C.; Park, J. W. Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 2018, 18, 4531-4540.
[86]
Jang, T. M.; Lee, J. H.; Zhou, H. L.; Joo, J.; Lim, B. H.; Cheng, H. Y.; Kim, S. H.; Kang, I. S.; Lee, K. S.; Park, E. et al. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. 2020, 6, eabc9675.
[87]
Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.
[88]
Hannah, S.; Brige, P.; Ravichandran, A.; Ramuz, M. Conformable, stretchable sensor to record bladder wall stretch. ACS Omega 2019, 4, 1907-1915.
[89]
Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Adv. Mater. 2019, 31, 1803309.
[90]
Wang, Y.; Yu, Y. R.; Guo, J. H.; Zhang, Z. H.; Zhang, X. X.; Zhao, Y. J. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Adv. Funct. Mater. 2020, 30, 2000151.
[91]
Yao, G.; Yin, C. H.; Wang, Q.; Zhang, T. Y.; Chen, S. H.; Lu, C.; Zhao, K. N.; Xu, W. N.; Pan, T. S.; Gao, M. et al. Flexible bioelectronics for physiological signals sensing and disease treatment. J. Mater. 2020, 6, 397-413.
[92]
Chen, Y.; Zhang, Y. C.; Liang, Z. W.; Cao, Y.; Han, Z. Y.; Feng, X. Flexible inorganic bioelectronics. npj Flex. Electron. 2020, 4, 2.
[93]
Kang, D. Y.; Kim, Y. S.; Ornelas, G.; Sinha, M.; Naidu, K.; Coleman, T. P. Scalable microfabrication procedures for adhesive-integrated flexible and stretchable electronic sensors. Sensors 2015, 15, 23459-23476.
[94]
Han, L.; Lu, X.; Wang, M. H.; Gan, D. L.; Deng, W. L.; Wang, K. F.; Fang, L. M.; Liu, K. Z.; Chan, C. W.; Tang, Y. H. et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 2017, 13, 1601916.
[95]
Brubaker, C. E.; Messersmith, P. B. Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 2011, 12, 4326-4334.
[96]
Yang, Z. L.; Zhao, X.; Hao, R.; Tu, Q. F.; Tian, X. H.; Xiao, Y.; Xiong, K. Q.; Wang, M.; Feng, Y. H.; Huang, N. et al. Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proc. Natl. Acad. Sci. 2020, 117, 16127-16137.
[97]
Baik, S.; Kim, J.; Lee, H. J.; Lee, T. H.; Pang, C. Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv. Sci. 2018, 5, 1800100.
[98]
Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H.; Ko, H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 2016, 28, 7457-7465.
[99]
Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Ho Bhang, S.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396-400.
[100]
Jin, K. J.; Cremaldi, J. C.; Erickson, J. S.; Tian, Y.; Israelachvili, J. N.; Pesika, N. S. Biomimetic bidirectional switchable adhesive inspired by the gecko. Adv. Funct. Mater. 2014, 24, 574-579.
[101]
Chen, P. J.; Saati, S.; Varma, R.; Humayun, M. S.; Tai, Y. C. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromechan. Syst. 2010, 19, 721-734.
[102]
Lee, J. O.; Park, H.; Du, J.; Balakrishna, A.; Chen, O.; Sretavan, D.; Choo, H. A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 2017, 3, 17057.
[103]
Lee, J. O.; Narasimhan, V.; Du, J.; Ndjamen, B.; Sretavan, D.; Choo, H. Biocompatible multifunctional black-silicon for implantable intraocular sensor. Adv. Healthc. Mater. 2017, 6, 1601356.
[104]
Narasimhan, V.; Siddique, R. H.; Lee, J. O.; Kumar, S.; Ndjamen, B.; Du, J.; Hong, N.; Sretavan, D.; Choo, H. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat. Nanotechnol. 2018, 13, 512-519.
[105]
Kim, T.; Cho, M.; Yu, K. J. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials 2018, 11, 1163.
[106]
Sang, M. Y.; Shin, J.; Kim, K.; Yu, K. J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374.
[107]
Harris, P. J. F. Carbon nanotube composites. Int. Mater. Rev. 2004, 49, 31-43.
[108]
Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S. J. Carbon nanotube electronics. Proc. IEEE 2003, 91, 1772-1784.
[109]
Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137-3140.
[110]
Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711-723.
[111]
Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190-194.
[112]
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
[113]
Dinh, T.; Phan, H. P.; Nguyen, T. K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N. T.; Viet Dao, D. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D: Appl. Phys. 2017, 50, 215401.
[114]
Liao, X. Q.; Liao, Q. L.; Yan, X. Q.; Liang, Q. J.; Si, H. N.; Li, M. H.; Wu, H. L.; Cao, S. Y.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395-2401.
[115]
Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507-4513.
[116]
Liu, W. J.; Liu, N. S.; Yue, Y.; Rao, J. Y.; Cheng, F.; Su, J.; Liu, Z. T.; Gao, Y. H. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 2018, 14, 1704149.
[117]
Yang, J.; Luo, S.; Zhou, X.; Li, J. L.; Fu, J. T.; Yang, W. D.; Wei, D. P. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 2019, 11, 14997-15006.
[118]
Zhao, X.; Chen, B.; Wei, G. D.; Wu, J. M.; Han, W.; Yang, Y. Polyimide/Graphene nanocomposite foam-based wind-driven triboelectric nanogenerator for self-powered pressure sensor. Adv. Mater. Technol. 2019, 4, 1800723.
[119]
Park, S. J.; Kim, J.; Chu, M.; Khine, M. J. A. M. T. Flexible piezoresistive pressure sensor using wrinkled carbon nanotube thin films for human physiological signals. Adv. Mater. Technol. 2018, 3, 1700158.
[120]
Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.
[121]
Nela, L.; Tang, J. S.; Cao, Q.; Tulevski, G.; Han, S. J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054-2059.
[122]
Jung, S.; Kim, J. H.; Kim, J.; Choi, S.; Lee, J.; Park, I.; Hyeon, T.; Kim, D. H. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 2014, 26, 4825-4830.
[123]
Chen, X. Y.; Liu, H.; Zheng, Y. J.; Zhai, Y.; Liu, X. H.; Liu, C. T.; Mi, L. W.; Guo, Z. H.; Shen, C. Y. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 42594-42606.
[124]
Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.
[125]
Xiao, Z. J.; Zhou, W. Y.; Zhang, N.; Zhang, Q.; Xia, X. G.; Gu, X. G.; Wang, Y. C.; Xie, S. S. All-carbon pressure sensors with high performance and excellent chemical resistance. Small 2019, 15, 1804779.
[126]
Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.
[127]
Zhu, Y. S.; Cai, H. B.; Ding, H. Y.; Pan, N.; Wang, X. P. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 2019, 11, 6195-6200.
[128]
Zhao, T. T.; Li, T. K.; Chen, L. L.; Yuan, L.; Li, X. F.; Zhang, J. H. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS Appl. Mater. Interfaces 2019, 11, 29466-29473.
[129]
Mickle, A. D.; Won, S. M.; Noh, K. N.; Yoon, J.; Meacham, K. W.; Xue, Y. G.; McIlvried, L. A.; Copits, B. A.; Samineni, V. K.; Crawford, K. E. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019, 565, 361-365.
[130]
Yan, D. X.; Bruns, T. M.; Wu, Y. T.; Zimmerman, L. L.; Stephan, C.; Cameron, A. P.; Yoon, E.; Seymour, J. P. Ultracompliant carbon nanotube direct bladder device. Adv. Healthc. Mater. 2019, 8, 1900477.
Nano Research
Pages 3096-3111
Cite this article:
Kang K, Park J, Kim K, et al. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Research, 2021, 14(9): 3096-3111. https://doi.org/10.1007/s12274-021-3490-0
Topics:
Part of a topical collection:

865

Views

48

Crossref

45

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 06 December 2020
Revised: 30 March 2021
Accepted: 31 March 2021
Published: 26 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return