Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The ordered Pt-based intermetallic nanoparticles (NPs) with small size show superior magnetic or catalytic properties, but the synthesis of these NPs still remains a great challenge due to the requirement of high temperature annealing for the formation of the ordered phase, which usually leads to sintering of the NPs. Here, we report a simple approach to directly synthesize monodisperse ordered L10-FePt NPs with average size 10.7 nm without further annealing or doping the third metal atoms, in which hexadecyltrimethylammonium chloride (CTAC) was found to be the key inducing agent for the thermodynamic growth of the Fe and Pt atoms into the ordered intermetallic structure in the synthetic process. In particular, 10.7 nm L10-FePt NPs synthesized by the proper amount of CTAC show a coercivity of 3.15 kOe and saturation magnetization of 45 emu/g at room temperature. The current CTAC-assisted synthetic strategy makes it possible to deeply understand the formation of the ordered Pt-based intermetallic NP in solution phase synthesis.
Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.
Liu, F.; Zhu J. H.; Yang W. L.; Dong, Y. H.; Hou, Y. L.; Zhang, C. Z.; Yin, H.; Sun, S. H. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem., Int. Ed. 2014, 53, 2176–2180.
Balasubramanian, B.; Skomski, R.; Li, X. Z.; Valloppilly, S. R.; Shield, J. E.; Hadjipanayis, G. C.; Sellmyer, D. J. Cluster synthesis and direct ordering of rare-earth transition-metal nanomagnets. Nano Lett. 2011, 11, 1747–1752.
Zhang, S.; Hao, Y. Z.; Su, D.; Doan-Nguyen, V. V. T.; Wu, Y. T.; Li, J.; Sun, S. H.; Murray, C. B. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J. Am. Chem. Soc. 2014, 136, 15921–15924.
Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512.
Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.
Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.
Son, K.; Ryu, G.; Jeong, H. H.; Fink, L.; Merz, M.; Nagel, P.; Schuppler, S.; Richter, G.; Goering, E.; Schütz, G. Superior magnetic performance in FePt L10 nanomaterials. Small 2019, 15, 1902353.
Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393–403.
Wang, H. B.; Shang, P. J.; Zhang, J.; Guo, M. W.; Mu, Y. P.; Li, Q.; Wang, H. One-step synthesis of high-coercivity L10-FePtAg nanoparticles: Effects of Ag on the morphology and chemical ordering of FePt nanoparticles. Chem. Mater. 2013, 25, 2450–2454.
Lei, W. J.; Yu, Y. S.; Yang, W. W.; Feng, M.; Li, H. B. A general strategy for synthesizing high-coercivity L10-FePt nanoparticles. Nanoscale 2017, 9, 12855–12861.
Li, D. Y.; Wang, H.; Ma, Z. H.; Liu, X.; Dong, Y.; Liu, Z. Q.; Zhang, T. L.; Jiang, C. B. FePt/Co core/shell nanoparticle-based anisotropic nanocomposites and their exchange spring behavior. Nanoscale 2018, 10, 4061–4067.
Kang, S. S.; Miao, G. X.; Shi, S.; Jia, Z.; Nikles, D. E.; Harrell, J. W. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J. Am. Chem. Soc. 2006, 128, 1042–1043.
Kim, J.; Rong, C. B.; Lee, Y.; Liu, J. P.; Sun, S. H. From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles. Chem. Mater. 2008, 20, 7242–7245.
Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. Y. Synthesis and self-assembly of fcc phase FePt nanorods. J. Am. Chem. Soc. 2007, 129, 6348–6349.
Tamada, Y.; Yamamoto, S.; Takano, M.; Nasu, S.; Ono, T. Well-ordered L10-Fe Pt nanoparticles synthesized by improved SiO2-nanoreactor method. Appl. Phys. Lett. 2007, 90, 162509.
Kim, J.; Rong, C. B.; Liu, J. P.; Sun, S. H. Dispersible ferromagnetic FePt nanoparticles. Adv. Mater. 2009, 21, 906–909.
Meng, Z. G.; Xiao, F.; Wei, Z. X.; Guo, X. Y.; Zhu, Y.; Liu, Y. R.; Li, G. J.; Yu, Z. Q.; Shao, M. H.; Wong, W. Y. Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Res. 2019, 12, 2954–2959.
Chen, X.; Wang, Y.; Wang, H. B.; Su, D.; Zhang, J.; Ruterana, P.; Wang, H. Direct one-pot synthesis of L10-FePtAg nanoparticles with uniform and very small particle sizes. J. Mater. Chem. C 2017, 5, 5316–5322.
Lei, W. J.; Xu, J. J.; Yu, Y. S.; Yang, W. W.; Hou, Y. L.; Chen, D. F. Halide ion-mediated synthesis of L10-FePt nanoparticles with tunable magnetic properties. Nano Lett. 2018, 18, 7839–7844.
Bigot, J. Y.; Kesserwan, H.; Halté, V.; Ersen, O.; Moldovan, M. S.; Kim, T. H.; Jang, J. T.; Cheon, J. Magnetic properties of annealed core-shell CoPt nanoparticles. Nano Lett. 2012, 12, 1189–1197.
Yu, X. F.; Li, L. L.; Su, Y. Q.; Jia, W.; Dong, L. L.; Wang, D. S.; Zhao, J. L.; Li, Y. D. Platinum-copper nanoframes: One-pot synthesis and enhanced electrocatalytic activity. Chem. —Eur. J. 2016, 22, 4960–4965.
Medwal, R.; Sehdev, N.; Govind; Annapoorni, G. S. Electronic states of self stabilized L10 FePt alloy nanoparticles. Appl. Phys. A 2012, 109, 403–408.
Yang, Z. Y.; Zhao, T. S.; Huang, X. X.; Chu, X.; Tang, T. Y.; Ju, Y. M.; Wang, Q.; Hou, Y. L.; Gao, S. Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 2017, 8, 473–481.
Yu, Y. X.; Goodfellow, B. W.; Rasch, M. R.; Bosoy, C.; Smilgies, D. M.; Korgel, B. A. Role of halides in the ordered structure transitions of heated gold nanocrystal superlattices. Langmuir 2015, 31, 6924– 6932.
Xie, S. F.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: The roles of capping agent and surface diffusion. J. Am. Chem. Soc. 2013, 135, 16658–16667.
Zhang, S.; Jiang, G. M.; Filsinger, G. T.; Wu, L. H.; Zhu, H. Y.; Lee, J. H.; Wu, Z. B.; Sun, S. H. Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale 2014, 6, 4852–4856.
Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. , Int. Ed. 2007, 119, 6449–6451.
Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.
Xu, Y. C.; Cui, X. Q.; Wei, S. T.; Zhang, Q. H.; Gu, L.; Meng, F. Q.; Fan, J. C.; Zheng, W. T. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Res. 2019, 12, 1173–1179.