AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability

Fei Wang1,2Zhao Li2Honghong Wang1Min Chen1Changbin Zhang1,4( )Ping Ning2Hong He1,3,4,
State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
Faculty of Environmental Science and Engineering Kunming University of Science and TechnologyKunming 650500 China
Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment, Chinese Academy of SciencesXiamen 361021 China
University of Chinese Academy of SciencesBeijing 100049 China

Present address: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Show Author Information

Graphical Abstract

Abstract

Single-atom catalysis recently attracts great attentions, however, whether single atom or their nanoparticle (NP) has the advantage in its intrinsic activity remains under heated debate. Ag/Al2O3 is a widely used catalyst for many catalytic reactions, while the effect of Ag particle size on the activity is seldom investigated due to the great difficulty in synthesizing single atom Ag and Ag clusters/ particles with different sizes. Herein, we firstly prepared an atomically dispersed Ag/Al2O3 catalyst using a nano-sized γ-Al2O3 as the support, subsequently obtained a series of Ag0/Al2O3 catalysts with different Ag particle sizes by H2 reducing single-atom Ag/Al2O3 catalyst at various temperatures. The Ag0/Al2O3 treated at 600 ℃ demonstrated superior CO oxidation performance over single-atom Ag/Al2O3 and the Ag/Al2O3 treated at 400 and 800 ℃. Based on experimental data and density functional theory (DFT) calculation results, we reveal that the larger Ag0 particle is beneficial to oxygen activation and improves the valence stability during oxidation reaction, while the aggregation of Ag0 particle also accordingly decreases the concentration of surface active sites, hence, there is an optimum Ag0 particle size. Our findings clearly confirm that Ag0 nanoparticle has the advantage over single-atom Ag species in its intrinsic activity for CO oxidation.

Electronic Supplementary Material

Download File(s)
12274_2021_3501_MOESM1_ESM.pdf (2.6 MB)

References

1

Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y.; Gogotsi, Y.; Wang, G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 12, 985–992.

2

Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y.; Gogotsi, Y.; Wang, G. Tuning the coordination environ­ment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

3

Zhao, Y.; Zhang, J.; Xie, Y.; Sun, B.; Jiang, J.; Jiang, W. J.; Xi, S.; Yang, H. Y.; Yan, K.; Wang, S.; Guo, X.; Li, P.; Han, Z.; Lu, X.; Liu, H.; Wang, G. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 2021, 21, 823–832.

4

Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J. -S.; Sykes, E. C. H. An atomic-scale view of single-site Pt catalysis for low- temperature CO oxidation. Nat. Catal. 2018, 1, 192–198.

5

Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419.

6

Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

7

Hülsey, M. J.; Zhang, B.; Ma, Z.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

8

Zou, X. P.; Wang, L. N.; Li, X. N.; Liu, Q. Y.; Zhao, Y. X.; Ma, T. M.; He, S. G. Noble-metal-free single-atom catalysts CuAl4O7-9—For CO oxidation by O2. Angew. Chem., Int. Ed. 2018, 57, 10989–10993.

9

Li, F.; Li, Y.; Zeng, X. C.; Chen, Z. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.

10

Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported pt catalysts. Science 2015, 350, 189.

11

Jones, J.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Pereira Hernández, X. I. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150.

12

Stephens, I. E. L.; Elias, J. S.; Shao-Horn, Y. The importance of being together. Science 2015, 350, 164.

13

Lamoth, M.; Plodinec, M.; Scharfenberg, L.; Wrabetz, S.; Girgsdies, F.; Jones, T.; Rosowski, F.; Horn, R.; Schlögl, R.; Frei, E. Supported Ag nanoparticles and clusters for CO oxidation: Size effects and influence of the silver–oxygen interactions. ACS Appl. Mater. Inter. 2019, 2, 2909–2920.

14

Cao, X.; Chen, M.; Ma, J.; Yin, B.; Xing, X. CO oxidation by the atomic oxygen on silver clusters: Structurally dependent mechanisms generating free or chemically bonded CO2. Phys. Chem. Chem. Phys. 2017, 19, 196–203.

15

Wang, F.; Ma, J.; Xin, S.; Wang, Q.; Xu, J.; Zhang, C.; He, H.; Cheng Zeng, X. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529–537.

16

Shibata, J.; Shimizu, K. -i.; Takada, Y.; Shichi, A.; Yoshida, H.; Satokawa, S.; Satsuma, A.; Hattori, T. Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. J. Catal. 2004, 227, 367–374.

17

Kim, P. S.; Kim, M. K.; Cho, B. K.; Nam, I. -S.; Oh, S. H. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3: Morphological, chemical, and kinetic changes. J. Catal. 2013, 301, 65–76.

18

Hu, C.; Peng, T.; Hu, X.; Nie, Y.; Zhou, X.; Qu, J.; He, H. Plasmon- induced photodegradation of toxic pollutants with Ag-Agi/Al2O3 under visible-light irradiation. J. Am. Chem. Soc. 2009, 9, 857–862.

19

Kung, K. A. B. a. H. H. Supported Ag catalysts for the lean reduction of NO with C3H6. J. Catal. 1997, 172, 93–102.

20

Ken-ichi, S.; Hisao, Y.; Atsushi, S.; Tadashi, H. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: Structure of active sites and reaction mechanism. Appl. Catal. B. 2001, 26, 151–162.

21

Hu, P.; Huang, Z.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y.; Gu, X.; Tang, X. Electronic metal-support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

22

Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 124, 4274–4279.

23

Wang, F.; He, G.; Zhang, B.; Chen, M.; Chen, X.; Zhang, C.; He, H. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia. ACS Catal. 2019, 9, 1437–1445.

24

Sandoval, A.; Aguilar, A.; Louis, C.; Traverse, A.; Zanella, R. Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: High activity and stability in co oxidation. J. Catal. 2011, 281, 40–49.

25

Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. J. Catal. 2006, 242, 103–109.

26

Verma, P.; Yuan, K.; Kuwahara, Y.; Mori, K.; Yamashita, H. Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material. Appl. Catal. B 2018, 223, 10–15.

27

Zhou, W.; Li, T.; Wang, J.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G.; Wang, L.; Ren, Z.; Jiang, B. et al. Composites of small ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731–742.

28

Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H. Nanosize effect of al2o3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia. ACS Catal. 2018, 8, 2670–2682.

29

Freund, H. -J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem., Int. Ed. 2011, 50, 10064–10094.

30

Woodham, A. P.; Meijer, G.; Fielicke, A. Activation of molecular oxygen by anionic gold clusters. Angew. Chem., Int. Ed. 2012, 51, 4444–4447.

Nano Research
Pages 452-456
Cite this article:
Wang F, Li Z, Wang H, et al. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Research, 2022, 15(1): 452-456. https://doi.org/10.1007/s12274-021-3501-1
Topics:

755

Views

41

Crossref

35

Web of Science

38

Scopus

4

CSCD

Altmetrics

Received: 28 December 2020
Revised: 02 April 2021
Accepted: 06 April 2021
Published: 02 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return