Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) ferromagnets with out-of-plane (OOP) magnetic anisotropy are potential candidates for realizing the next-generation memory devices with ultra-low power consumption and high storage density. However, a scalable approach to synthesize 2D magnets with OOP anisotropy directly on the complimentary metal-oxide semiconductor (CMOS) compatible substrates has not yet been mainly explored, which hinders the practical application of 2D magnets. This work demonstrates a cascaded space confined chemical vapor deposition (CS-CVD) technique to synthesize 2D FexGeTe2 ferromagnets. The weight fraction of iron (Fe) in the precursor controls the phase purity of the as-grown FexGeTe2. As a result, high-quality Fe3GeTe2 and Fe5GeTe2 flakes have been grown selectively using the CS-CVD technique. Curie temperature (TC) of the as-grown FexGeTe2 can be up to ~ 280 K, nearly room temperature. The thickness and temperature-dependent magnetic studies on the Fe5GeTe2 reveal a 2D Ising to 3D XY behavior. Also, Terahertz spectroscopy experiments on Fe5GeTe2 display the highest conductivity among other FexGeTe2 2D magnets. The results of this work indicate a scalable pathway for the direct growth and integration of 2D ternary magnets on CMOS-based substrates to develop spintronic memory devices.
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265– 269.
O'Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125– 3131.
Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room- temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.
Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.
May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.
Wu, D.; Zhang, Z.; Li, L.; Zhang, Z. Z.; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films. Sci. Rep. 2015, 5, 12352.
Sbiaa, R.; Meng, H.; Piramanayagam, S. N. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Status Solidi Rapid Res. Lett. 2011, 5, 413–419.
Liu, T.; Cai, J. W.; Sun, L. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer. AIP Adv. 2012, 2, 032151.
Docherty, C. J.; Parkinson, P.; Joyce, H. J.; Chiu, M. H.; Chen, C. H.; Lee, M. Y.; Li, L. J.; Herz, L. M.; Johnston, M. B. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano 2014, 8, 11147–11153.
Stahl, J.; Shlaen, E.; Johrendt, D. The van der Waals ferromagnets Fe5–δGeTe2 and Fe5–δ–xNixGeTe2-crystal structure, stacking faults, and magnetic properties. Z. Anorg. Allg. Chem. 2018, 644, 1923–1929.
Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.
Lloyd-Hughes, J.; Jeon, T. I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 2012, 33, 871–925.
Lu, W.; Ling, J. W.; Xiu, F. X.; Sun, D. Terahertz probe of photoexcited carrier dynamics in the Dirac semimetal Cd3As2. Phys. Rev. B 2018, 98, 104310.
McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 2015, 27, 612–620.
Siberchicot, B.; Jobic, S.; Carteaux, V.; Gressier, P.; Ouvrard, G. Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3. J. Phys. Chem. 1996, 100, 5863–5867.
Seo, J.; Kim, D. Y.; An, E. S.; Kim, K.; Kim, G. Y.; Hwang, S. Y.; Kim, D. W.; Jang, B. G.; Kim, H.; Eom, G. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.
Kim, K.; Seo, J.; Lee, E.; Ko, K. T.; Kim, B. S.; Jang, B. G.; Ok, J. M.; Lee, J.; Jo, Y. J.; Kang, W. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 2018, 17, 794–799.
Matsuda, T.; Kanda, N.; Higo, T.; Armitage, N. P.; Nakatsuji, S.; Matsunaga, R. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 2020, 11, 909.
Huisman, T. J.; Mikhaylovskiy, R. V.; Telegin, A. V.; Sukhorukov, Y. P.; Granovsky, A. B.; Naumov, S. V.; Rasing, T.; Kimel, A. V. Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4. Appl. Phys. Lett. 2015, 106, 132411.
Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room- temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.
Liu, B. J.; Zou, Y. M.; Zhou, S. M.; Zhang, L.; Wang, Z.; Li, H. X.; Qu, Z.; Zhang, Y. H. Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2. Sci. Rep. 2017, 7, 6184.
Liu, B. J.; Zou, Y. M.; Zhang, L.; Zhou, S. M.; Wang, Z.; Wang, W. K.; Qu, Z.; Zhang, Y. H. Critical behavior of the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Sci. Rep. 2016, 6, 33873.
Li, Z. X.; Xia, W.; Su, H.; Yu, Z. H.; Fu, Y. P.; Chen, L. M.; Wang, X.; Yu, N.; Zou, Z. Q.; Guo, Y. F. Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism. Sci. Rep. 2020, 10, 15345.
Kim, D.; Park, S.; Lee, J.; Yoon, J.; Joo, S.; Kim, T.; Min, K. J.; Park, S. Y.; Kim, C.; Moon, K. W. et al. Antiferromagnetic coupling of van der Waals ferromagnetic Fe3GeTe2. Nanotechnology 2019, 30, 245701.
Yi, J. Y.; Zhuang, H. L.; Zou, Q.; Wu, Z. M.; Cao, G. X.; Tang, S. W.; Calder, S. A.; Kent, P. R. C.; Mandrus, D.; Gai, Z. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 2016, 4, 011005.
Poulopoulos, P.; Krishnan, R.; Flevaris, N. K. Antiferromagnetic-like coupling evidence in a Pd-Ni multilayer with inverted hysteresis features. J. Magn. Magn. Mater. 1996, 163, 27–31.
Ziese, M.; Vrejoiu, I.; Hesse, D. Inverted hysteresis and giant exchange bias in La0.7Sr0.3MnO3/SrRuO3 superlattices. Appl. Phys. Lett. 2010, 97, 052504.
Geshev, J.; Viegas, A. D. C.; Schmidt, J. E. Unusual remanent magnetization of granular Co/Cu. J. Magn. Magn. Mater. 1999, 196–197, 126–127.
Tokura, Y.; Nagaosa, N. Orbital physics in transition-metal oxides. Science 2000, 288, 462–468.
Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F. Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 2009, 79, 235114.
Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space- confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909–2931.
Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.
Tang, L.; Teng, C. J.; Luo, Y. T.; Khan, U.; Pan, H. Y.; Cai, Z. Y.; Zhao, Y.; Liu, B. L.; Cheng, H. M. Confined van der Waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research 2019, 2019, 2763704.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Condens. Matter. Phys. 2009, 22, 022201.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 77, 3865.