Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Precursor compounds (PCs) link quantum dots (QDs) and magic-sized clusters (MSCs), which is pivotal in the conversion between QDs and MSCs. Here, for the first time, we report the transformation, synthesis, and composition of a type of ZnSe PCs. ZnSe PCs can be directly transformed to two different MSCs with the assistance of octylamine and acetic acid at room temperature. The two types of MSCs exhibit sharp absorption peaks at 299 and 328 nm which are denoted as MSC-299 and MSC-328. In the preparation of ZnSe PCs, diphenylphosphine (DPP) as an additive plays a key role which not only inhibits the thermal decomposition of Zn precursor, but also acts as a reducing agent to reduce the by-products produced in the reaction. The composition was explored by X-ray photoelectron spectroscopy, energy dispersive spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectra with ZnSe PC powder appeared as white powder after purifying by toluene (Tol) and methanol (MeOH). The results indicate that the molar ratio of Zn/Se is 2:1 with a molecular of ∼ 3, 350 Da. Therefore, we propose that the molecular formula of ZnSe PCs is Zn32Se16. In addition, at the molecular level, the covalent bond of Zn–Se is formed in ZnSe PCs. This study offers a deeper understanding of the transformation from PCs to MSCs and for the first time proposes the composition of PCs. Meanwhile, this research provides us with a new understanding of the role of DPP in the synthesis of colloidal semiconductor nanoparticles.
Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634−638.
Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407−412.
Hung, C. C.; Ho, S. J.; Yeh, C. W.; Chen, G. H.; Huang, J. H.; Chen, H. S. Highly luminescent dual-color-emitting alloyed [ZnxCd1–xSeyS1–y] quantum dots: Investigation of bimodal growth and application to lighting. J. Phys. Chem. C 2017, 121, 28373−28384.
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800−803.
Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white- light-emitting diodes. Appl. Phys. Lett. 2005, 86, 131905.
Wei, H. T.; Sun, H. Z.; Zhang, H.; Gao, C.; Yang, B. An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Res. 2010, 3, 496−505.
Li, Z. J.; Li, S. Y.; Davis, A. H.; Hofman, E.; Leem, G.; Zheng, W. W. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020, 13, 1668−1676.
Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956−1968.
Ke, F.; Wang, L. H.; Zhu, J. F. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834−1846.
Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81−90.
Yao, T. T.; Zhao, Q.; Qiao, Z. P.; Peng, F.; Wang, H. J.; Yu, H.; Chi, C.; Yang, J. Chemical synthesis, structural characterization, optical properties, and photocatalytic activity of ultrathin ZnSe nanorods. Chem. —Eur. J. 2011, 17, 8663−8670.
Ehsan, M. F.; Bashir, S.; Hamid, S.; Zia, A.; Abbas, Y.; Umbreen, K.; Ashiq, M. N.; Shah, A. One-pot facile synthesis of the ZnO/ZnSe heterostructures for efficient photocatalytic degradation of azo dye. Appl. Surf. Sci. 2018, 459, 194−200.
Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B Environ. 2019, 244, 340−346.
Liu, X.; Wen, D. L.; Liu, Z.; Wei, J.; Bu, D. L.; Huang, S. M. Thiocyanate-capped CdSe@Zn1–xCdxS gradient alloyed quantum dots for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 402, 126178.
Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118382.
Zhao, K.; Pan, Z. X.; Mora-Seró, I.; Cánovas, E.; Wang, H.; Song, Y.; Gong, X. Q.; Wang, J.; Bonn, M.; Bisquert, J. et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 2015, 137, 5602−5609.
Jin, B. B.; Kong, S. Y.; Zhang, G. Q.; Chen, X. Q.; Ni, H. S.; Zhang, F.; Wang, D. J.; Zeng, J. H. Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells. J. Colloid Interface Sci. 2021, 586, 640−646.
Huang, F.; Zhang, L. S.; Zhang, Q. F.; Hou, J.; Wang, H. G.; Wang, H. L.; Peng, S. L.; Liu, J. S.; Cao, G. Z. High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 2016, 8, 34482−34489.
Huang, F.; Hou, J.; Wang, H. G.; Tang, H.; Liu, Z. Y.; Zhang, L. S.; Zhang, Q. F.; Peng, S. L.; Liu, J. S.; Cao, G. Z. Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 2017, 32, 433−440.
Melendres-Sánchez, J. C.; López-Delgado, R.; Saavedra-Rodríguez, G.; Carrillo-Torres, R. C.; Sánchez-Zeferino, R.; Ayón, A.; Álvarez- Ramos, M. E. Zinc sulfide quantum dots coated with PVP: Applications on commercial solar cells. J. Mater. Sci: Mater. Electron. 2021, 32, 1457−1465.
Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045−3053.
Kumar, A.; Li, K. T.; Madaria, A. R.; Zhou, C. W. Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications. Nano Res. 2011, 4, 1181−1190.
Marandi, M.; Abadi, S. H. Aqueous synthesis of colloidal CdSexTe1–x–CdS core-shell nanocrystals and effect of shell formation parameters on the efficiency of corresponding quantum dot sensitized solar cells. Sol. Energy 2020, 209, 387−399.
Zhou, R. H.; Sun, S. K.; Li, C. H.; Wu, L.; Hou, X. D.; Wu, P. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl. Mater. Interfaces 2018, 10, 34060−34067.
Zhang, J.; Wang, J.; Yan, T.; Peng, Y. N.; Xu, D. J.; Deng, D. W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging. J. Mater. Chem. B 2017, 5, 8152−8160.
Che, D. C.; Zhu, X. X.; Wang, H. Z.; Duan, Y. R.; Zhang, Q. H.; Li, Y. G. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging. J. Colloid Interface Sci. 2016, 463, 1−7.
Zhao, B. X.; Yao, Y. L.; Yang, K.; Rong, P. F.; Huang, P.; Sun, K.; An, X.; Li, Z. M.; Chen, X. Y.; Li, W. W. Mercaptopropionic acid-capped Mn2+: ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications. Nanoscale 2014, 6, 12345−12349.
Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727−5735.
Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.
Liu, S. P.; Yu, Q. Y.; Zhang, C. C.; Zhang, M.; Rowell, N.; Fan, H. S.; Huang, W.; Yu, K.; Liang, B. Transformation of ZnS precursor compounds to magic-size clusters exhibiting optical absorption peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75−82.
Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem. , Int. Ed. 2020, 59, 12013−12021.
Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227−1235.
Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.
Luan, C. R.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H. S.; Yu, K. Evolution of two types of CdTe magic-size clusters from a single induction period sample. J. Phys. Chem. Lett. 2018, 9, 5288−5295.
Luan, C. R.; Tang, J. B.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H. S.; Yu, K. Four types of CdTe magic-size clusters from one prenucleation stage sample at room temperature. J. Phys. Chem. Lett. 2019, 10, 4345−4353.
Tang, J. B.; Hui, J.; Zhang, M.; Fan, H. S.; Rowell, N.; Huang, W.; Jiang, Y. N.; Chen, X. Q.; Yu, K. CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm. Nano Res. 2019, 12, 1437−1444.
Chen, M.; Luan, C. R.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C. C.; Wang, S. L.; Zhu, X. H.; Fan, H. S.; Huang, W. et al. Evolution of CdTe magic-size clusters with single absorption doublet assisted by adding small molecules during prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230−2240.
Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818−2824.
Zhang, J.; Li, L. J.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H. S.; Zhang, C. C.; Huang, W.; Zhang, M.; Yu, K. One-step approach to single-ensemble CdS magic-size clusters with enhanced production yields. J. Phys. Chem. Lett. 2019, 10, 2725−2732.
Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660−3666.
Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.
Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.
Sanz, E.; Vega, C.; Espinosa, J. R.; Caballero-Bernal, R.; Abascal, J. L. F.; Valeriani, C. Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 2013, 135, 15008−15017.
Bai, G. Y.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 2019, 576, 437−441.
LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847−4854.
Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610−7630.
García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233−1249.
Xie, L. S.; Shen, Y.; Franke, D.; Sebástian, V.; Bawendi, M. G.; Jensen, K. F. Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 2016, 138, 13469−13472.
Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018, 140, 3652−3662.
Wurmbrand, D.; Fischer, J. W. A.; Rosenberg, R.; Boldt, K. Morphogenesis of anisotropic nanoparticles: Self-templating via non-classical, fibrillar Cd2Se intermediates. Chem. Commun. 2018, 54, 7358−7361.
Evans, C. M.; Evans, M. E.; Krauss, T. D. Mysteries of TOPSe revealed: Insights into quantum dot nucleation. J. Am. Chem. Soc. 2010, 132, 10973−10975.
Nguyen, T. L.; Michael, M.; Mulvaney, P. Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem. Mater. 2014, 26, 4274−4279.
Musić, S.; Šarić, A.; Popović, S. Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram. Int. 2010, 36, 1117−1123.
Yu, K.; Hrdina, A.; Zhang, X. G.; Ouyang, J. Y.; Leek, D. M.; Wu, X. H.; Gong, M. L.; Wilkinson, D.; Li, C. S. Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with precursor reactivity elevated by a secondary phosphine. Chem. Commun. 2011, 47, 8811−8813.
Galian, R. E.; Diaz, P.; Ribera, A.; Rincón-Bertolín, A.; Agouram, S.; Pérez-Prieto, J. Controlled building of CdSe@ZnS/Au and CdSe@ZnS/ Au2S/Au nanohybrids. Nano Res. 2015, 8, 2271−2287.
Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen- doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790−1798.
Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761−6770.
Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Wang, F. D.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. , Int. Ed. 2012, 51, 6154−6157.
Wang, Y. Y.; Zhang, Y.; Wang, F. D.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 2014, 26, 2233−2243.
Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99−102.
Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H.; Qian, Y. T. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew. Chem. , Int. Ed. 2002, 41, 4697−4700.
Xue, S. L.; Wu, S. X.; Zeng, Q. Z.; Xie, P.; Gan, K. X.; Wei, J.; Bu, S. Y.; Ye, X. N.; Xie, L.; Zou, R. J. et al. Synthesis, field emission properties and optical properties of ZnSe nanoflowers. Appl. Surf. Sci. 2016, 365, 69−75.
Panda, A. B.; Acharya, S.; Efrima, S. Ultranarrow ZnSe nanorods and nanowires: Structure, spectroscopy, and one-dimensional properties. Adv. Mater. 2005, 17, 2471−2474.
Acharya, S.; Panda, A. B.; Efrima, S.; Golan, Y. Polarization properties and switchable assembly of ultranarrow ZnSe nanorods. Adv. Mater. 2007, 19, 1105−1108.
Mahieu, N. G.; Patti, G. J. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017, 89, 10397−10406.
Pezzatti, J.; Boccard, J.; Codesido, S.; Gagnebin, Y.; Joshi, A.; Picard, D.; González-Ruiz, V.; Rudaz, S. Implementation of liquid chromatography–high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal. Chim. Acta 2020, 1105, 28−44.
Xi, L. F.; Cho, D. Y.; Duchamp, M.; Boothroyd, C. B.; Lek, J. Y.; Besmehn, A.; Waser, R.; Lam, Y. M.; Kardynal, B. Understanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals. ACS Appl. Mater. Interfaces 2014, 6, 18233−18242.
Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465−1476.
Cordeiro, M. A. L.; Weng, W. H.; Stroppa, D. G.; Kiely, C. J.; Leite, E. R. High resolution electron microscopy study of nanocubes and polyhedral nanocrystals of cerium(IV) oxide. Chem. Mater. 2013, 25, 2028−2034.
Demortière, A.; Panissod, P.; Pichon, B. P.; Pourroy, G.; Guillon, D.; Donnio, B.; Bégin-Colin, S. Size-dependent properties of magnetic iron oxidenanocrystals. Nanoscale 2011, 3, 225−232.
Yu, K.; Hrdina, A.; Ouyang, J. Y.; Kingston, D.; Wu, X. H.; Leek, D. M.; Liu, X. Y.; Li, C. S. Ultraviolet ZnSe1–xSx gradient-alloyed nanocrystals via a noninjection approach. ACS Appl. Mater. Interfaces 2012, 4, 4302−4311.