AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Record-high saturation current in end-bond contacted monolayer MoS2 transistors

Jiankun Xiao1,§Zhuo Kang1,§Baishan Liu1Xiankun Zhang1Junli Du1Kuanglei Chen1Huihui Yu1Qingliang Liao1,2Zheng Zhang1,2( )Yue Zhang1,2( )
Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology BeijingBeijing 100083 China
State Key Laboratory for Advanced Metals and Materials School of Materials Science and Engineering, University of Science and Technology BeijingBeijing 100083 China

§Jiankun Xiao and Zhuo Kang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Monolayer two-dimensional (2D) semiconductors are emerging as top candidates for the channels of the future chip industry due to their atomically thin body and superior immunity to short channel effect. However, the low saturation current caused by the high contact resistance (Rc) in monolayer MoS2 field-effect transistors (FETs) limits ultimate electrical performance at scaled contact lengths, which seriously hinders application of monolayer MoS2 transistors. Here we present a scalable strategy with a clean end-bond contact scheme that leads to size-independent electrodes and ultralow contact resistance of 2.5 kΩ·μm to achieve record high performances of saturation current density of 730 μA·μm-1 at 300 K and 960 μA·μm-1 at 6 K. Our end-bond contact strategy in monolayer MoS2 FETs enables the great potential for atomically thin integrated circuitry.

Electronic Supplementary Material

Download File(s)
12274_2021_3504_MOESM1_ESM.pdf (7 MB)

References

1

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

2

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

3

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

4

Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954–959.

5

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

6

Xu, K.; Chen, D. X.; Yang, F. Y.; Wang, Z. X.; Yin, L.; Wang, F.; Cheng, R. Q.; Liu, K. H.; Xiong, J.; Liu, Q. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 2017, 17, 1065–1070.

7

Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.

8

Xiao, X. Y.; Chen, M.; Zhang, J.; Zhang, T. F.; Zhang, L. H.; Jin, Y. H.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Sub-10 nm monolayer MoS2 transistors using single-walled carbon nanotubes as an evaporating mask. ACS Appl. Mater. Interfaces 2019, 11, 11612–11617.

9

Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

10

Liu, L. J.; Qiu, C. G.; Zhong, D. L.; Si, J.; Zhang, Z. Y.; Peng, L. M. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 2017, 9, 9615–9621.

11

Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

12

Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4- styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.

13

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

14

Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

15

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

16

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

17

Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

18

Zhu, Y. B.; Li, Y. J.; Arefe, G.; Burke, R. A.; Tan, C.; Hao, Y. F.; Liu, X. C.; Liu, X.; Yoo, W. J.; Dubey, M. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 2018, 18, 3807–3813.

19

Liu, X. Q.; Yang, X. N.; Gao, G. Y.; Yang, Z. Y.; Liu, H. T.; Li, Q.; Lou, Z.; Shen, G. Z.; Liao, L.; Pan, C. F. et al. Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires. ACS Nano 2016, 10, 7451–7457.

20

Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single- layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano 2014, 8, 1031–1038.

21

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

22

Gao, Q. G.; Zhang, Z. F.; Xu, X. L.; Song, J.; Li, X. F.; Wu, Y. Q. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 2018, 9, 4778.

23

Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

24

Lee, Y. T.; Choi, K.; Lee, H. S.; Min, S. W.; Jeon, P. J.; Hwang, D. K.; Choi, H. J.; Im, S. Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel. Small 2014, 10, 2356–2361.

25

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

26

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

27

Sun, L. F.; Yan, X. X.; Zheng, J. Y.; Yu, H. D.; Lu, Z. X.; Gao, S. P.; Liu, L. N.; Pan, X. Q.; Wang, D.; Wang, Z. G. et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 2018, 18, 3435–3440.

28

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

29

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

30

Liu, S. Q.; Li, J. Z.; Shi, B. W.; Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R.; Wang, Y. Y.; Zhang, H.; Yan, J. H. et al. Gate-tunable interfacial properties of in-plane ML MX2 1T′–2H heterojunctions. J. Mater. Chem. C 2018, 6, 5651–5661.

31

Kong, L. A.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

32

Jain, A.; Szabó, Á.; Parzefall, M.; Bonvin, E.; Taniguchi, T.; Watanabe, K.; Bharadwaj, P.; Luisier, M.; Novotny, L. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 2019, 19, 6914–6923.

33

Cheng, Z. H.; Yu, Y. F.; Singh, S.; Price, K.; Noyce, S. G.; Lin, Y. C.; Cao, L. Y.; Franklin, A. D. Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 2019, 19, 5077– 5085.

34

Liang, T.; Habib, M. R.; Xiao, H.; Xie, S.; Kong, Y. H.; Yu, C.; Iwai, H.; Fujita, D.; Hanagata, N.; Chen, H. Z. et al. Intrinsically substitutional carbon doping in CVD-grown monolayer MoS2 and the band structure modulation. ACS Appl. Electron. Mater. 2020, 2, 1055–1064.

35

Liu, B. S.; Liao, Q. L.; Zhang, X. K.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066.

36

Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Ou, Y.; Du, J. L.; Xiao, J. K.; Gao, L.; Shan, H. Y.; Luo, Y. et al. Self-healing originated van der waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano 2019, 13, 3280–3291.

37

English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824–3830.

38

Santosh, K. C.; Longo, R. C.; Addou, R.; Wallace, R. M.; Cho, K. Electronic properties of MoS2/MoOx interfaces: Implications in tunnel field effect transistors and hole contacts. Sci. Rep. 2016, 6, 33562.

39

Zheng, X. R.; Calò, A.; Albisetti, E.; Liu, X. Y.; Alharbi, A. S. M.; Arefe, G.; Liu, X. C.; Spieser, M.; Yoo, W. J.; Taniguchi, T. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2019, 2, 17–25.

40

Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

41

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

42

Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 2017, 4, 011009.

43

Yang, Z. Y.; Liu, X. Q.; Zou, X. M.; Wang, J. L.; Ma, C.; Jiang, C. Z.; Ho, J. C.; Pan, C. F.; Xiao, X. H.; Xiong, J. et al. Performance limits of the self-aligned nanowire top-gated MoS2 transistors. Adv. Funct. Mater. 2017, 27, 1602250.

44

Chen, P. C.; Lin, C. P.; Hong, C. J.; Yang, C. H.; Lin, Y. Y.; Li, M. Y.; Li, L. J.; Yu, T. Y.; Su, C. J.; Li, K. S. et al. Effective N-methyl-2- pyrrolidone wet cleaning for fabricating high-performance monolayer MoS2 transistors. Nano Res. 2019, 12, 303–308.

45

Smithe, K. K. H.; Suryavanshi, S. V.; Muñoz Rojo, M.; Tedjarati, A. D.; Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 2017, 11, 8456–8463.

46

Guimaraes, M. H. D.; Gao, H.; Han, Y. M.; Kang, K.; Xie, S. E.; Kim, C. J.; Muller, D. A.; Ralph, D. C.; Park, J. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 2016, 10, 6392–6399.

47

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

48

Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

49

Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature ohmic contact to monolayer MoS2 by van der waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

50

Chang, M. C.; Ho, P. H.; Tseng, M. F.; Lin, F. Y.; Hou, C. H.; Lin, I. K.; Wang, H.; Huang, P. P.; Chiang, C. H.; Yang, Y. C. et al. Fast growth of large-grain and continuous MoS2 films through a self- capping vapor-liquid-solid method. Nat. Commun. 2020, 11, 3682.

51

Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030–3034.

52

Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516–4522.

53

Sanne, A.; Ghosh, R.; Rai, A.; Yogeesh, M. N.; Shin, S. H.; Sharma, A.; Jarvis, K.; Mathew, L.; Rao, R.; Akinwande, D. et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett. 2015, 15, 5039–5045.

54

Liu, H.; Si, M. W.; Najmaei, S.; Neal, A. T.; Du, Y. C.; Ajayan, P. M.; Lou, J.; Ye, P. D. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 2013, 13, 2640–2646.

55

Ni, Z. Y.; Ye, M.; Ma, J. H.; Wang, Y. Y.; Quhe, R.; Zheng, J. X.; Dai, L.; Yu, D. P.; Shi, J. J.; Yang, J. B. et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv. Electron. Mater. 2016, 2, 1600191.

Nano Research
Pages 475-481
Cite this article:
Xiao J, Kang Z, Liu B, et al. Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Research, 2022, 15(1): 475-481. https://doi.org/10.1007/s12274-021-3504-y
Topics:

896

Views

29

Crossref

27

Web of Science

28

Scopus

2

CSCD

Altmetrics

Received: 28 February 2021
Revised: 22 March 2021
Accepted: 07 April 2021
Published: 14 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return